


Contents
1 Introduction 1

1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data Analytics and the Potentials from an Economic Per-

spective 6

3 Machine Learning 11

3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Statistical Summary of Features . . . . . . . . . . . . . 12
3.1.2 Feature Transformation . . . . . . . . . . . . . . . . . 14
3.1.3 Feature Creation and Selection . . . . . . . . . . . . . 17

3.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . 25
3.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . 26
3.2.3 Semi-supervised learning . . . . . . . . . . . . . . . . . 27
3.2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . 27

3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Classification Methods 31

4.1 K Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 33
4.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Application of Classification Techniques 42

5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 62

ii



5.3.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Iteration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Iteration 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Iteration 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Iteration 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7.1 Look & Think . . . . . . . . . . . . . . . . . . . . . . . 71
5.7.2 Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Comparison of Other Approaches . . . . . . . . . . . . . . . . 75

6 Conclusion 76

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iii



List of Figures
1 Action Research Cycle . . . . . . . . . . . . . . . . . . . . . . 4
2 Data Mining Process . . . . . . . . . . . . . . . . . . . . . . . 7
3 Machine learning potential across industries . . . . . . . . . . 10
4 Information gain . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Filter approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Wrapper approach . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Embedded approach . . . . . . . . . . . . . . . . . . . . . . . 21
8 Scatter plot of income and part of the city . . . . . . . . . . . . . . . 23
9 The orange diagonal is the identified principal component . . . . . . . 23
10 The connections between the principal component and the points is the

information loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Initial data points in a one dimensional space . . . . . . . . . . . . . 23
12 The original data (left figure) can be linearly divided through

squaring the values and consequently adding an additional di-
mension (right figure) [25]. . . . . . . . . . . . . . . . . . . . . 24

13 Three possible hyperplanes [32]. . . . . . . . . . . . . . . . . . 34
14 The hyperplane with the maximal margin between the in-

stances [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15 Separation of the data based on the support vector classifier

[32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
16 A polynomial kernel of degree three applied to a SVM [32]. . . 37
17 A radial kernel applied to a SVM [32]. . . . . . . . . . . . . . 37
18 ROC curve with 0.95 AUC [32] . . . . . . . . . . . . . . . . . 45
19 First ten rows of training data . . . . . . . . . . . . . . . . . . 48
20 Statistical analysis of continuous features . . . . . . . . . . . . 49
21 Statistical analysis of ordinal features . . . . . . . . . . . . . . 49
22 Histograms of categorical features . . . . . . . . . . . . . . . . 50
23 Boxplot of categorical features . . . . . . . . . . . . . . . . . . 51
24 Influence of ordinal features on the target variable . . . . . . . 52
25 Influence of categorical features on the target variable . . . . . 54
26 Influence of binary features on the target variable . . . . . . . 55
27 Influence of continuous features on the target variable . . . . . 56
28 Influence of continuous features on the target variable . . . . . 56
29 Summary of percentage of missing values within each feature 58
30 Features selection based on low variance as filter approach . . 59
31 Code to create dummy variables for all categorical features . . 60
32 ROC curve of oversampled dataset using Random Forest . . . 64
33 Feature subset using forward selection in Weka . . . . . . . . . 65

iv



34 ROC curve of oversampled dataset using AdaBoost with 12
trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

35 Feature subset using backward selection in Weka . . . . . . . . 66
36 ROC curve of tuned Random Forest . . . . . . . . . . . . . . . 70
37 ROC curve of AdaBoost using tuned decision tree . . . . . . . 70
38 Histograms of continuous features . . . . . . . . . . . . . . . . 86
39 Histograms of ordinal features . . . . . . . . . . . . . . . . . . 87
40 Histograms of binary features . . . . . . . . . . . . . . . . . . 88
41 Boxplot of continuous features . . . . . . . . . . . . . . . . . . 89
42 Boxplot of ordinal features . . . . . . . . . . . . . . . . . . . . 90

v



List of Tables
1 Features and statistics used in the Case Study . . . . . . . . . 14
2 Feature Transformation in the Case Study . . . . . . . . . . . 17
3 Feature selection methods used in the Case Study . . . . . . . 21
4 Feature Types and Operators . . . . . . . . . . . . . . . . . . . . . 24
5 Feature generation methods used in the Case Study . . . . . . 25
6 Feature generation methods used in the Case Study . . . . . . 28
7 Model types in the Case Study . . . . . . . . . . . . . . . . . 30
8 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 AUC value interpretation . . . . . . . . . . . . . . . . . . . . . 45
10 Feature labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11 Summary of missing values and the action of dealing with them 59
12 Change history of Iteration 1 . . . . . . . . . . . . . . . . . . . 61
13 Change history of Iteration 2 . . . . . . . . . . . . . . . . . . . 63
14 Change history of Iteration 3 . . . . . . . . . . . . . . . . . . . 65
15 Change history of Iteration 4 . . . . . . . . . . . . . . . . . . . 68
16 Change history of Iteration 5 . . . . . . . . . . . . . . . . . . . 70
17 Change history of Iteration 6 . . . . . . . . . . . . . . . . . . . 72
18 Summary of the results from all iterations . . . . . . . . . . . 74

vi



Abstract

Machine learning is already used by many business domains and for

various applications, such as fraud detection, credit assessment, mar-

ket segmentation or risk management. The purpose of this thesis is to

investigate machine learning in general and analyze different classifica-

tion methods in particular. Furthermore, to gain a better understand-

ing of classification techniques several potentially suitable approaches

are applied to a dataset from an insurance company. We perform

three learning algorithms with several variations on the dataset. We

observed that ensemble learning methods perform better than sim-

ple learning methods. Moreover, we discovered that feature selection

influences the classification positively. Lastly, we analyzed different

approaches to deal with unbalanced datasets and found that there was

relative little difference in their predictive power, however, the pro-

cessing time showed a significant difference. Based on our analysis

we provide a summary of the findings so that they can be applied to

classification problems in different contexts.
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1 Introduction
Technological progress and innovation changes how businesses work and op-
erate: banks, retailers, manufacturers, healthcare institutions and other en-
terprises across different industries - all have already changed in the way
they operate throughout the years [44]. The evolving technology leads to
an increase in available data and analyzing it can be beneficial for compa-
nies [70]. With that in mind, analyzing data helps companies to understand
their customers better and respond to their changing needs. For instance, a
company can analyze social media comments about its products, services or
promotions and identify aspects that people like or dislike [44]. Marketing
can identify people that are more likely to buy a product and address their
product suggestions effectively to the corresponding customer segment [10].
Fraud detection can be improved through the combination of various internal
and external data sources [44]. Using the potential of today’s data has many
possible applications, but without analyzing the available data no additional
value can be created.

Machine learning is one of the fastest growing areas [33] and refers to a
system that discovers patterns in data automatically and improves through
experience [10]. It is a discipline of Artificial Intelligence (AI) which re-
quires a system to perform activities that in general would require human
intelligence [62]. By definition, intelligence requires the ability to learn and
improve [5]. Machine learning can achieve that through continuously analyz-
ing data. Once it discovers patterns or correlations in the data it can apply
the knowledge on new, unseen data. The goal of machine learning, however,
is to act autonomously based on its learnings that are achieved through the
analysis of big amounts of data [5]. Machine learning can be used for many
problem areas, such as the ones mentioned above. Therefore, machine learn-
ing has gained importance as different industries became aware of potential
possibilities for improving their businesses. Using the examples from above
we can see that machine learning is a relevant research area that has a lot of
potential for various industries. The relevancy of machine learning and its
ubiquitous applicability is the main motivation for this thesis. However, due
to the fact that machine learning is a very broad topic, we want to partic-
ularly focus on classification which is one area of machine learning that is
used to assign data instances to one class or another. Classification can be
used for predictive analytics, where data is used to predict whether a certain
outcome will occur or not.
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1.1 Research Question

The aim of the thesis is to perform research into machine learning in gen-
eral and look into classification tasks in particular. This is done by applying
various techniques to a practical example borrowed from the insurance in-
dustry. The methods proposed in the thesis can be applied to most of the
classification tasks as they are not domain specific. The research was guided
by a publicly available competition, where an insurance company provided
anonymized customer data to predict whether a customer will file a claim in
the next year. More details on the scope of the competition can be found in
Section 1.2.

With this in mind, the following research question arises:

• What is the effectiveness of various feature selection and classification
techniques?

Based on this, the following subquestions need to be answered:

• How do you identify valuable features?

• Which algorithms are suitable for a classification problem?

• Which metrics are suitable for the comparison of classification algo-
rithms?

1.2 Use Case

The insurance industry has been subject to many fraud activities and is one
of the domains which requires a lot of speculation about its customers, as
they generally never know when a claim will be filed. Therefore, insurance
companies increase their prices to stabilize their losses from insurance claims
[63]. Through machine learning, however, this has changed and has already
made a severe impact in the insurance business environment. If insurance
companies could identify the customers who are more likely to file a claim
they could adapt their prices and minimize their risk of losses. It would also
lead to an improved price strategy, where customers who are less likely to
claim pay a reduced rate [1].

The practical part of the thesis is based on the case study of the Brazilian
Insurance Company Porto Seguro which was published as a machine learning
competition on Kaggle1. Kaggle is an online platform for various machine

1
for more details see https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
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learning challenges, where companies can host a competition, and individuals
and teams can participate in it. In the case of the Porto Segoro competition,
the company provided historical data consisting of records that provide infor-
mation about certain attributes from the past three years. These attributes
are called features and represent stored information about the customer, such
as age or gender, the car or the region. However, we do not know what these
features are in a real-world scenario as they were anonymized. Understanding
the features, their interaction and influence between each other is, therefore,
considered to be a main challenge of the competition, and by extension this
thesis.

1.3 Methodology

This section describes the methodology that we use in order to carry out our
research and can be grouped into a theoretical and a practical part. The
following explains each of the two parts more in detail.

1.3.1 Theory

The theoretical part of the thesis is necessary to build a common understand-
ing of machine learning and identify some of the possible ways to approach
a classification task. The literature review consists of academic papers, re-
views, books, but also community based inputs (e.g. blogs).

To evaluate the importance of data for today’s enterprises, we investigate
the economical benefits that can be derived from it. Therefore, to set the
scene, we analyze data science, analytics and their connection to machine
learning in Chapter 2. Additionally, to identify the necessary steps in per-
forming a machine learning task we analyze the three main parts of it which
is presented in Chapter 3. According to Flach [25], these are features, tasks
and models which can be seen as inputs, machine learning types and outputs
correspondingly. Moreover, the literature review is essential for identifying
possible classification algorithms which are explained in Chapter 4. To un-
derstand how these classification algorithms work, we additionally use online
tutorials2, blogs or wikis, as the community provides many valuable inputs.

1.3.2 Practice

The goal of the practical part is to apply the knowledge gained in the the-
oretical part via a concrete use case. As this part iteratively applies sev-

2
https://udacity.com/course/intro-to-machine-learning–ud120
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Figure 1: Action Research Cycle

eral approaches and evaluates them, we use Action Research based on the
framework presented from Stringer [66] as our main methodology. Chapter 5
summarizes the practical part which is performed iteratively with each cycle
repeating the steps depicted in Figure 1. A description of each step can be
found below.

Define the Problem. The problem definition is an important initial step
as it helps to narrow the scope of the research. The problem was already
defined by the Kaggle competition which asked participants to predict
which customer is more likely to make an insurance claim.

Gather Information. Since historical data of the insurance company has
already been provided, we do not need to gather company relevant
data. However, we need to explore different implementation possibil-
ities. With that in mind, we analyze several libraries, such as scikit-
learn [56], and evaluate different functions that could be relevant for
the case study. Furthermore, we explore several approaches of other
participants.

Explore and Analyze. Exploring and analyzing the data is necessary to
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understand what data we have. In particular, it is important to analyze
the types of features, its ranges or statistics.

Interpret. By interpreting the results from the analysis we can recognize
patterns and establish hypotheses that can be tested in the next steps.

Plan. Planning is necessary to prioritize tasks and make sure that all rele-
vant tasks are considered. As we use several approaches that we present
in the theoretical part, planning also deals with evaluating which ap-
proaches are suitable for the given dataset.

Implement. Implementation applies the techniques that were identified as
suitable in the plan step.

Evaluate. Evaluation is important to assess the relevance of the techniques
to the given problem. If we identify that the approach that was used
does not work well with our dataset, we repeat the entire process.

The thesis is structured in two parts. The first part focuses on the theory and
the second part on a practical implementation of the knowledge gained from
the theoretical part. In Chapter 2 we introduce the relevancy of data analyt-
ics and set the scene for machine learning and its components in Chapter 3,
which looks at features, models and tasks individually as they can be seen as
main pillars of machine learning. Chapter 4 analyzes classification methods
in detail and is consequently the last chapter of the theoretical part. The
practical part is described in Chapter 5 where we apply the knowledge gained
from the previous chapters on a dataset from the car insurance industry.
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2 Data Analytics and the Potentials from an
Economic Perspective

As previously mentioned in Chapter 1, we know that technological progress
changes how companies operate. One reason for this change is the increase
in available data. In the last two years more data has been created than
in the entire human history and it is estimated that each person will create
1.7 megabytes of new data every second by 2020 [43]. Different sources of
data, such as social media content (e.g. picture uploads or postings), voice
recordings, video data, and messages are combined resulting in an important
asset for companies [22]. It is not new that data is known to be "the new
oil", which was initially coined by Clive Humby [2] in 2006, and that analyz-
ing it, can benefit companies, research organizations and the people itself [69].

Davenport [21] argues that analyzing data can basically generate three types
of value: Firstly, he says that the results derived from a data analysis can lead
to improved processes which simultaneously result in cost savings. Secondly,
he states that decisions can be improved through it. For instance, by adding
new sources to predictive models, new perspectives can be derived. A model
which is going to predict a recommended offer for customers based on their
historical data can be improved by adding customers’ sentiments or liking
behaviors on social media platforms. Lastly, he sees an opportunity in im-
proving products and services. LinkedIn’s feature "People You May Know"
is a good example illustrating the economic potential of data analytics, as
the introduction of this feature created a lot of new customers on LinkedIn
and increased the click-through rates by 30%.

Today’s companies may have lots of data, however, according to Kitchin
[38], this data is not self-explanatory and it needs to be further examined
to extract meaning out of it. The overall goal of finding insights and de-
riving knowledge from it is called Data science [6]. Besides the available
data, companies need people with certain skills that are able to work with the
data. Those people are called data scientists and according to Davenport [21],
they are responsible for producing models, identifying patterns or predicting
a likelihood of an outcome. For this they require a diverse set of skills, such as
technical understanding, curiosity, statistical knowledge and strong commu-
nication skills to be able to advice management and also domain knowledge.
Latter is important to understand the problems and the identified solutions.

An important step in data analytics is the preparation of the available data
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Figure 2: Data Mining Process

in order to derive insights on it. The steps in the process lane from Figure 2
are important pre-processing steps to reduce the complexity of the available
data and increase its quality. The following description explains each of the
steps seen in Figure 2 which was presented by Miller [46], who also indicated
that some of the steps can be skipped or repeated.

Data selection. Not all the data available will be important for an anal-
ysis. This step requires to identify which data variables or which data
points are necessary. Using all of them could result in inefficiency and
redundancy.

Data pre-processing. This step includes cleaning the data. It makes sure
that noise, errors or bias are removed. It also includes the handling of
missing values and duplicates. Furthermore, this step can also include
the data enrichment step as the data can be combined with external
data for instance.

Data reduction and projection. Reducing the dimensionality of data
through aggregation or normalization for example can lead to better
representations of the data.

Data enrichment. In order to increase insights and knowledge the data
can be combined with other data, such as combining customer data
with their feedback on social media platforms.

Data mining. Data mining techniques are used to find hidden patterns,
relations and trends in the data.

Interpreting and Reporting. Techniques to conclude patterns and trends
do not help us much, unless we are able to evaluate them and under-
stand what they say. Interpreting the results is essential and allows us
to further communicate the gained information.
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According to Minelli et al. [47], we can basically put data analytics into three
basic categories: description, prediction and prescription. Description ana-
lyzes what and when something happened. Prediction looks at what could
happen next or what would change if we used another approach. Lastly,
prescription focuses on what is expected and how to achieve an optimal
results. They further explain that the descriptive analysis is usually done
at the beginning, as the value of the data is not known yet and needs to
be identified by analyzing historical data. The predictive and prescriptive
approach get more important once the data has been analyzed. For instance,
we can predict the likelihood of an outcome if we use historical data that we
identified as important in a prior descriptive analysis.

Fisher et al. [24] describe a new discipline of data analytics, which they
see as a process to extract high-value data from a huge amount of low-value
data. Therefore, data analytics consists of different analyses, which strongly
depend on the type of available data. For instance, more structured data use
statistical and data mining techniques to derive insights on it. Hand et al. [29]
define data mining as the "analysis of (often large) observational data sets
to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner". Nilsson [54] fur-
ther specifies data mining as extracting relationships and correlation through
machine learning methods and Alpaydin [5] summarizes data mining as "the
application of machine learning methods to large databases". All however,
say that data mining concentrates on identifying the relationships in the data
from various sources.

Machine learning can be applied in order to learn, improve and automate
the analysis over time [9]. Machine learning is a branch of artificial intelli-
gence, which refers to a system that is considered smart or intelligent. The
definition of intelligence requires the ability to learn and adopt to changes [5].
Machine learning as a whole, can be further broken down into four groups:
supervised, unsupervised, semi-supervised and reinforcement learning. The
following will roughly describe how a classification algorithm, which is part
of supervised learning, works. Classifying data means matching them to cer-
tain classes and in the case of binary classification we only have two classes,
which are referred to either positive or negative [25].

Henke et al. [30] point out that usually software applications are composed
of business logic that is hard coded by software developers. Over time, how-
ever, hard coded rules can become outdated due to change in the environ-
ment. Through machine learning, however, the program is trained to learn
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from the data and its diversity. They further mention that the more data a
machine algorithm gets, the more it can learn from the inputs. It will analyze
different criteria and based on its experience, the method can predict future
outcomes and/or gain knowledge from the data. More concretely, training
the algorithm means feeding it with data that consists of certain attributes,
called features. This set of data, which helps the system learn is called a
training set [9]. During this process, the data scientist selects and creates
new features (e.g. combines available ones) that will make an impact on the
result [64]. As data scientists understand the business they might have an
initial idea which features could contribute to a better result [30].

Supervised learning, in contrast to the other disciplines of machine learn-
ing, provides correctly classified instances in the training data. Using the
correct classes the algorithm can learn by analyzing the inputs associated
with them. Therefore, the more data the algorithm has, the more correct
results it can provide [32]. Often, the training set is divided into two parts:
a training and validation set [5]. The validation set is used to evaluate the
performance of a classifier, which is the machine learning algorithm used for
classification. Usually data scientists try several algorithms to see how each
one performs. The validation set is therefore created so that a comparison
between the different classifiers is possible [5]. After the learning process is
completed, the system is presented with a completely new data set, called
test set [71]. Roughly speaking, based on the training and the conclusions
it made, it will end up in a good or bad result [26].

Machine learning can be used for different problems and within different in-
dustries. A current McKinsey Global Institute analysis [30] looked at 2,000
work activities across roughly 800 occupations, such as those from a retail
worker ("Greet customer", "Answer questions about products and services",
"Demonstrate product features", etc.) and evaluated corresponding capa-
bilities (e.g. "language understanding"). They identified that some of the
capabilities needed for the job are suited for machine learning. Capabili-
ties that stand out are for instance understanding and generating natural
language, recognizing patterns, optimizing and planning, and sensory per-
ception. On the other hand, capabilities which are not suited for machine
learning included logical reasoning, creativity and coordination with multiple
agents. Machine learning has already some potential use in a daily working
environment and this example should highlight this. Furthermore, the study
analyzed the potential impact of machine learning on eight problem types
on twelve industries. The results can be seen in Figure 3. Interesting is that
strategic optimization, predictive analytics, and forecasting seem to have the

9



Figure 3: Machine learning potential across industries

highest impact in almost all industries and there is no analyzed industry
which does not have any potential for machine learning. What we are miss-
ing in this matrix, however, is the potential impact of machine learning in
the insurance industry. It is known that insurance companies use the avail-
able data about their customers for analysis and risk assessment [30]. Their
analysis used inputs such as age, sex or driving records to classify the indi-
vidual and calculate the premium [45]. However, it can be assumed that this
approach includes a lot of bias as for instance all young people were put into
one category, without really differentiating whether the person is a good or
bad driver [71].

Machine learning, however, has become an important tool for this industry as
now more accurate models can be developed through the increasing hetero-
geneous data. Insurance companies can use external data to better assess the
risk of a customer [19], which consequentially allows them to optimize their
prices and increase their customer satisfaction [41]. Furthermore, identifying
fraud is more efficient through machine learning as more unstructured data,
such as text (medical notes, reports, etc.) or social media information (e.g.
relation between two parties) can be analyzed [41].
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As risk depends on many factors and differs from person to person, it still
presents a core challenge for insurance companies to calculate appropriate
prices for each individual. Machine learning is already used by the insurance
industry to overcome this challenge. The goal of this thesis is to better under-
stand what machine learning is, what its components are and how to apply
it on a dataset. Through experimentation an empirical analysis is conducted
using a dataset provided by Porto Seguro, a car insurance company.

3 Machine Learning
"Things learn when they change their behavior in a way that makes them
perform better in the future" [71]. Learning results in change and if done
right, it always results in improved skills, sometimes more, sometimes less.
This definition can be applied to humans but also systems, that are capa-
ble of changing their behavior by themselves through learning what is right
and wrong. Flach [25] introduced a concept that he calls "the ingredients of
machine learning" for explaining to his readers the three main parts of ma-
chine learning: Features, models and tasks. As they are principal elements
of machine learning, this chapter is structured accordingly.

3.1 Features

"Features3 determine much of the success of a machine learning application,
because a model is only as good as its features" [25]. This statement says
already a lot about the importance of features, or rather, the importance
of selecting the right features amongst many. Flach [25] further indicates
that at the beginning of each machine learning task it can be valuable to
first of all analyze the features from a statistical perspective and to subse-
quently identify which of the features will be useful or can be discarded. For
instance, if another feature incorporates the same information or if features
can be combined into a new one. In a dataset different types of features may
exist and each one requires a different analytical approach. Basically they
can be divided into quantitative, ordinal, categorical and boolean values [25].

Hand et al. [29] explain the terms and describe that quantitative features,
also called continuous features, refer to values that incorporate a numerical
scale, such as age or income. If an order of values exists, then they are called
ordinal features, for example rankings. Categorical features, also called

3
Features are attributes of a data instance. A person might have the features gender,

age or weight.
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nominal features, are values that are neither numerical nor in a certain order,
such as regions or cities. Booleans, in contrast, only work with two values,
true and false, or 1 and 0. A boolean feature would for example be whether
a customer filed a claim (=1) or not (=0).

3.1.1 Statistical Summary of Features

Statistics can be used in order to analyze the available data. However,
depending on the type of feature some statistical calculations make sense,
whereas others do not. Statistics can be grouped into statistics of central
tendency, statistics of dispersion and shape statistics [25]. Statistics of

central tendency are used to analyze and compare the data, statistics of

dispersion look at the spread of the values, and shape statistics look at
how the visualization of the values is formed, for example a normal distribu-
tion [60].

The arithmetic mean, median and mode are probably the most used statistics
of central tendency. The mean is the average value of a set of observations.
The mean cannot be calculated for each feature type. Moreover, it does not
make sense for all quantitative features regardless of their domain [25]. To
clarify, calculating the mean on the drivers age will make sense as we can
identify the average age of a group of drivers. However, averaging the horse
power of a car will most probably not give any insight. In order to make use
of the median, it is required that the values can be ordered, as the median
is the middle value of the ordered list [25]. The median could therefore also
be calculated on a driver’s age, as the different age values could be ordered
from smallest to highest. Reimann et al. [60] explain that the median is
resistant to extreme values, also called outliers, measurements that are way
above or below the other ones. They further describe that the median stays
the same even if 50% of the data falls into extreme values. In contrast, out-
liers are influencing the mean as each value is included in the calculation and
weighted equally. Therefore, if dealing with outliers, the median is seen to
be a better choice for evaluating the central value. Lastly, the mode is the
value that exists the most often in a set of observations [25] and is coherently,
the value that has the highest probability to occur in that set [60]. With that
in mind, it can provide valuable input if enough data is available, especially
in dealing with missing values, as one approach might be to use the mode
for the replacement of missing values of categorical features within certain
groups [7]. To demonstrate, the engine size of a car might be an important
feature to identify whether a customer will file a claim in the next year. If for
some observations the engine size is missing, one might calculate the mode
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of the engine size in the range of a certain gas consumption (miles per gallon).

According to Flach [25], Variance and standard deviation are often used
in the statistics of dispersion. The variance is the squared deviation of
the mean and the standard deviation is its square root. Both statistics
measure the spread to the mean, but the standard deviation uses the same
measuring unit as the feature. Furthermore, statistics such as range or quan-
tiles can be used to analyze the features. The range is the difference between
the maximum and minimum value and quantiles can be broken down to per-
centiles, deciles and quartiles. Percentile refers to the value where the p-th
percent of the observations are below it. The 10th percentile is also the first
decile, the 25th percentile is more often called the first quartile and similarly,
the 50th percentile, second quartile and the fifth decile are the same as the
median [64]. Percentiles in the upper and lower range (e.g. first or 95th
percentile) are often used to identify outliers [60].

Reimann et al. [60] indicate that in a very balanced dataset the distri-
bution of the data will result in a normal distribution, where, theoretically,
the mean, mode and median are the same. As the data gets more diverse
and includes higher spreads, the shape of the distribution changes. Skewness
and kurtosis are two possibilities to measure the shape of data. Skewness

measures the symmetry of the dataset. This means that if a dataset has
a normal distribution, its skewness is zero. However, if the distribution of
the data shows that one side includes more data than the other, it includes
skewness. If a dataset includes more values on the left side than the right, it
is called right-skewed and the skewness takes on positive values. In contrast,
if the values are more on right side it is a left-skewed distribution, where the
skewness takes on negative values. Kurtosis is another measure of shape
and indicates how flat or peaked the distribution is. A normal distribution
has a kurtosis of zero, it takes positive values for a higher peak than the
normal distribution and negative values for a flatter peak. Depending on
the data size, skewness and kurtosis can be standardized with a constant.
Moreover, both standardized values of the shape measures should be within
the range of ± 2, otherwise they are considered extreme.

Table 1 was adopted from Flach [25] and summarizes the possibilities of
statistical calculations depending on the kind of feature. In general, quan-
titative features can be calculated on all of the above mentioned statistics,
whereas others, such as categorical features, do not really allow a broad sta-
tistical analysis. In fact, all non numeric features (categorical and boolean)
values, cannot be used to calculate the standard deviation or the variance.
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Feature Kind Tendency Used Spread Used Shape Used

Categorical mode
p

n.a. n.a.

Boolean mode
p

n.a. n.a.

Ordinal mode, median
p

quantiles
p

n.a.

Quantitative mode, median,
mean

p
quantiles,
range,
variance,
standard
deviation

p
skewness,
kurtosis

⇥

Table 1: Features and statistics used in the Case Study

Nor can they use shape statistics to analyze the size of the peak. Therefore,
those values are indicated with n.a. in Table 1. Furthermore, the Used
column indicates whether it was used in the case study that can be found in
Chapter 5.

3.1.2 Feature Transformation

Some machine learning methods cannot deal with certain features, for ex-
ample categorical, which is why these features need to be changed in order
to work with them. The process of improving features through changing, re-
moving or adding information is called feature transformation and Flach
[25] provides an excellent description of feature transformations which are
summarized below.

The different types of feature transformations depend on the type of detail
a feature has. Quantitative features include the most detailed information
of all four feature types. Ordinal features include more information than
categorical ones and boolean features contain the least information. Bina-

rization is the simplest feature transformation, as it transforms categorical
values into a corresponding set of boolean features. This means, that if a
categorical feature includes three different categories, these three will each
result in their own corresponding boolean feature. This is a necessary step if
a model cannot deal with more than two values at once. If we assume that
we have a feature "engine size" which specifies to which group a car belongs.
This feature could have the values 1100, 2000 or 3000 cubic centimeter (cc).
Then the set of booleans could look like the following:

xi1

(
1, if ith car is an 1100 cc engine
0, otherwise
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Figure 4: Information gain

The second could be

xi2

(
1, if ith car is an 2000 cc engine
0, otherwise

and so forth, until the set of booleans is created containing one for each value
of the feature.

The process of transforming an ordinal feature into a categorical one is called
Unordering, as the ordering is eliminated. Unordering is often necessary as
many learning methods cannot deal with ordinal features.

Thresholding is another feature transformation and refers to the change
of quantitative or ordinal features into a boolean feature. Decision trees,
a supervised learning method which is discussed more in detail later on in
this chapter, could use thresholding as a splitting criteria. It can be further
reduced to unsupervised and supervised thresholding, where unsupervised
thresholding usually uses statistics of tendency such as the mean to evaluate
splits. In contrast, supervised thresholding can often do a more precise job, as
it sorts the data values and tries to increase metrics such as the information
gain. The information gain is a frequently used measurement in information
theory and often finds its use in decision trees [57]. The amount by which
the entropy decreases is the information gain. The entropy is a measure that
evaluates how impure a given set is. If a split divides a set into two pure leafs
then its entropy is 0 [28]. Figure 4 uses a trivial visual example to illustrate
entropy and information gain.
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Flach [25] further indicates that Discretization is a more commonly used
way of feature transformation. The available data points are generalized with
the help of so called "bins". In other words, each bin is a grouping of data and
represents an interval of the original values. A country’s gross salary could
be an example where discretization makes sense. Instead of many different
values, a model might work better by grouping them into bins (e.g. <25,000
e, 25,000 - 45,000 e, >45,000 e). Discretization can again be broken down
into a supervised and unsupervised approach. Unsupervised discretization
requires the amount of bins upfront, whereas the supervised approach uses
other methods, such as a top-down or bottom-up approach, to identify an op-
timal number of splits progressively. A top-down approach splits the values
continuously into bins, whereas bottom-down approaches start by putting
values into its own bin and merging them one after another. However, both
methods require a stopping criteria which decides whether a further split is
done.

Normalization and calibration are two feature transformation methods which
focus on the different scales of quantitative or ordinal variables. Normaliza-

tion refers to a unsupervised approach and transforms quantitative features
which use different measuring units on a 0-1 scale. This kind of feature trans-
formation enables it to work with different units. An often used example to
illustrate normalization is the comparison between persons using their height
and their weight. Both values can be used to identify a certain outcome, for
instance the gender of a person. However, as height values are usually bigger
if the measure is in centimeters (or smaller if the measure is in meter), it gets
more difficult to compare weight to height. Normalizing the features results
in values between 0 and 1 and can consequently be compared to each other.
On the other hand, feature calibration is a supervised method of feature
transformation that adds a scale to categorical or ordinal features.

The above mentioned feature transformations require the availability of data.
However, for various reasons it might be that some of the data points are
missing. The process of finding a acceptable value for the missing one is
called imputation. The quickest and easiest way to fill out a missing value
is to use statistics, such as the mean, median or mode for a certain group
[7]. Another possibility for analyzing in a more precise way is to analyze the
correlations between features and build a predictive model to identify the
missing values [25]. Table 2 summarizes the possible feature transformations
from this chapter and indicates if they are needed in the case study which
can be seen in the Used column. The table also includes the reason why the
method was necessary or not.
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Transformation Used Reason

Binarization
p

categorical features need to be transformed into

booleans

Unordering ⇥ learning methods that are used can work with ordinal

values, therefore unordering is not needed

Thresholding
p

automatically done by decision trees when quantitative

features are used

Discretization ⇥ features with a high amount of values were discarded

from the dataset due to irrelevance

Normalization
p

dataset includes features with different scales

Calibration ⇥ the dataset does not include ordinal values with high

variety of scales

Imputation
p

missing values are present in dataset

Table 2: Feature Transformation in the Case Study

3.1.3 Feature Creation and Selection

At the beginning of this chapter it was mentioned that features play a ma-
jor role in machine learning. Besides feature transformation other feature-
relevant tasks are important. The quality of the dataset sets the base for
the success of the machine learning task [65]. Usually, the dataset consists of
many features, whereby not all of them are useful to a model [35]. If a model
uses features that are irrelevant, it might harm the model more than it con-
tributes to a better result [35]. Furthermore, some of the available features
might be redundant [50], highly correlate with each other (e.g. price and tax
paid), or only have an impact on the model if they are combined with others,
appearing as one single feature [65]. These problems are classified as feature
irrelevance and feature interaction and can be addressed by feature selection
and feature creation respectively [65, 42].

Feature selection

Motoda and Liu [50] explain feature selection as the process of choosing a
subset of features in order to optimally reduce the original feature space ac-
cording to a criterion. The information gain, correlation coefficient and the
accuracy are often used to measure the utility of a feature [65, 35]. Fur-
thermore, feature selection is seen as the process to eliminate irrelevant and
redundant features from the original data [35]. For datasets which include
thousands of features such as text processing or gene expression problems,
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Figure 5: Filter approach

feature selection is especially of high importance. However, it is also a neces-
sary step in smaller datasets, since fewer features allow the learning method
to operate faster and more effectively [28]. With that in mind, reducing the
original feature space can in some cases improve accuracy [28, 35] and in
others, allow a better comprehensibility of the results [65, 28]. Depending
on the way of how the features are chosen, feature selection methods can
be categorized into filters, wrappers, and embedded methods. For a better
understanding of the three feature selection methods we depicted each one
visually by using a blog post [36] as inspiration. They are shown from Figure
5 through 7.

In the case of filters, features are already selected before the training of
the learning algorithm starts and are seen as a data preprocessing step [28].
Filters have the advantage that they are faster compared to wrappers as
irrelevant or redundant features are eliminated before the training of the al-
gorithm has started [65]. Additionally, filter methods are generic in their
nature; hence they can be used by all learning methods [65]. Figure 5 vi-
sually shows how a filter approach works; the corresponding description of
each step can be found below.

Initial feature space. The initial features that are available, when starting
a machine learning task.

Calculate scores. The calculation on the importance of features is nec-
essary in order to rank the features. There exist various possibilities
for that such as dependency, information, or distance measures [20].
Information gain is one of the calculations measuring the relevancy of
a feature [65]. Further calculations on feature importance include the
Pearson correlation which belongs to the group of dependency measures
and calculates the correlation of the features to the response variable,
and the chi squared, which can be associated with the group of dis-
tance measures as it looks at how close the expected values are from
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Figure 6: Wrapper approach

the actual ones [53].

Rank scores. Once the importance of each feature has been calculated, it
is ranked according to their score.

Select feature subset. At this point, the new feature subset is selected.
The ranking in the previous step is used to identify which of the features
should be kept. However, the threshold for the selection of the features
can be manually specified.

Train learning algorithm. Once the new set of features has been selected,
training the algorithm is conducted with the new feature space.

Evaluate performance. As a last step, the results of the learning algo-
rithm need to be evaluated.

Wrappers apply the learning method which subsequently creates a new
feature subset [65]. Usually, this approach separates the training set into a
training and validation set; the training set is used to train the predictor, the
performance is then checked on the validation set [65]. Each of the subsets
provides the accuracy as it can compare the actual results to the predicted
ones and this accuracy is used as a score for the corresponding feature set [65].
The process of training and evaluating is done repeatedly and in the end, the
feature set with the highest score is taken [65]. Wrappers have proved useful
as an optimal subset is selected, however, due to the long iterative process
they are computationally more intensive and consequently very slow [65, 27].
Figure 6 visually shows how a wrapper approach works; the corresponding
description of each step can be found below.

Initial feature space. The initial feature space is the set of features that
is available, when starting a machine learning task.

Create feature subset. Creating the new feature subset is done through
a search strategy. The three most commonly known search strategies
are forward selection, backward elimination and randomized feature
selection [50].
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Train learning algorithm. Once the new set of features has been selected,
training the algorithm is conducted with the new feature space.

Evaluate performance. After each iteration the results of the current
learning algorithm need to be evaluated in order to identify whether
the process should still go on or be terminated.

As can be seen in Figure 6 creating the new set of features, training the
algorithm and evaluating its performance is repeated until the performance
decreases based on the current feature set. The three search strategies differ
in the way how the feature subset is created.

Liu and Motoda [40] describe the different search strategies as follows: In
the case of forward selection we start with an empty feature subset and it-
eratively add a feature. Usually the process stops once the performance, such
as the accuracy, decreases. Backward elimination starts with all available
features and removes one feature at each iteration. Both approaches are
heuristic, which means that they do not provide the best solution but a good
one, as the potential sub space of features grows exponentially. Lastly, a
randomized feature selection is a good choice when dealing with a large
set of possible features, where forward selection and backward elimination
would take too long. A random feature selection algorithm decides randomly
which features to use. Often, a randomized feature selection can be the sim-
plest and fastest approach in selecting a subset of features [51].

Embedded methods combine the process of feature selection and model
training [39]. More specifically, this means that the learning algorithm auto-
matically selects a subset of features while training the model [39]. A decision
tree is an example for an embedded feature selection method as it selects its
feature subset through the splits in the tree [40]. Figure 7 visually shows how
an embedded approach works; the corresponding description of each step can
be found below.

Initial feature space. The initial feature space is the set of features that
is available, when starting a machine learning task.

Create feature subset and train learning algorithm. Creating a fea-
ture subset and training the learning algorithm is done as one single
step since this approach is in the nature of the learning algorithm [39].

Evaluate performance. At the end the performance is evaluated which
can be done with various metrics.
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Figure 7: Embedded approach

Selection method Used Reason

Filter
p

We use a variance threshold to select features which is

considered to be a filter approach. A filter approach is

generic and can be used for various learning methods

Wrapper
p

We use random forest which can be defined as wrapper

approach

Embedded
p

We use a decision trees and boosted trees which both

can be defined as embedded approach

Automated Feature

Selection

p
We use WEKA to automatically select features using

forward and backward selection

Table 3: Feature selection methods used in the Case Study

Furthermore, several tools for an automated feature selection exist which
for instance use statistical calculations to identify the importance of fea-
tures. The Weka Datamining tool4 is one of them that can be used for larger
datasets. The use of such a tool might be especially useful, when domain
knowledge is limited and consequently a feature subset selection is more chal-
lenging.

Table 3 summarizes the possible feature selection methods and provides in-
formation which of them are used in our case study.

Feature creation

Feature creation is also known as feature generation, feature engineering
or feature construction. There exist various definitions for feature creation
which slightly differ but in summary still explain the same, namely that new
features are created. One definitions describes the transformation of input
features into new, more powerful features [65]. Other describe feature cre-
ation as the process of generating features from raw data [34, 49]. Similarly,

4
https://www.cs.waikato.ac.nz/ml/weka/downloading.html
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further interpretations define the area as the process of creating new features
from original ones [50, 42]. Feature engineering is done in order to achieve
two goals: either to reduce dimensionality or improve performance, such as
accuracy, visualization and understandability [59, 31, 50, 65]. Reducing the
dimensionality will consequently lead to a lower amount of features, whereas
performance improvement will lead to more features than in the original data
set [65]. There exist various possibilities to create new features depending on
the feature type and the goal someone has in mind. The following first of all
explains the possibilities to reduce dimensionality and further on continues
with different approaches to improve the performance of a model.

Dimensionality Reduction
Principal Component Analysis (PCA) is a often used method in order
to reduce the dimensionality of datasets [29]. Alpaydin [5] describes that the
original features are replaced by new attributes that are constructed from
the linear combinations of the original features. For instance, a two dimen-
sional space can be reduced to a one dimensional space by using a principal
components analysis. The PCA identifies the center of the data and rotates
the axes in such a way that a projection of the data points leads to one
dimension. The principal component is drawn where the data points have
the highest variance (spread) and the mapping of the data points have the
least information loss. The information loss is the distance that is lost from
turning a two dimensional space into a one dimensional space.

Figure 8 through 10 are used to illustrate how a PCA works. The x axis
shows the income of a customer and the y axis represents a certain part of
the city. We assumed that the more income customers have, the more likely
they will live in a better neighborhood. Therefore, a PCA could reduce the
dimensions, as it takes income and part of a city and creates a new feature
neighborhood that includes the same information.

Performance Improvement
One approach to increase the performance of models is to combine two or
more features to one single feature. This might be useful if, for instance,
the features from the original feature space do not have any, or low, impact
on the model but if combined, they result in a strong predictor. Taking an
insurance company as an example, one might think that instead of treating
the age of the driver and his/her driving experience in years as two individual
features, it might be stronger if the two features are combined resulting in
a new feature. With that in mind, drivers that are older could potentially
be wrongly classified as not risky whereas young drivers might be classified
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Figure 8: Scatter plot of income and part

of the city

Figure 9: The orange diagonal is the iden-

tified principal component

Figure 10: The connections between the

principal component and the points is the

information loss

Figure 11: Initial data points in a one di-

mensional space

as risky. Although, this seems reasonable it still might improve the model
if the years of driving experience are combined with the age, as some older
drivers might actually not have much driving experience and, therefore, have
a higher risk. However, it depends on the learning method whether this
approach leads to an improvement or not [25]. Furthermore, quantitative
features can be combined using common mathematical operators [65]. Ta-
ble 4 shows a summary of some possible operators which is adopted from
Sondhi [65].

Polynomial combinations are a powerful method in feature engineering. Of-
ten, this approach is used if a learning algorithm requires linear separability.
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Feature type Operator

Boolean conjuction, disjunction, negations, etc.

Categorical cartesian product

Quantitative min, max, polynomial combinations, mathematical operators

Table 4: Feature Types and Operators

Figure 12: The original data (left figure) can be linearly divided through
squaring the values and consequently adding an additional dimension (right
figure) [25].

In real-world scenarios a linear separation is often not possible and therefore,
needs to be modified. For example, support vector machines are a super-
vised learning method that use so called kernels to add dimensions, which
achieve the desired linear separability. Figure 12 was adopted from Flach
[25] and illustrates how kernels can change the distribution of the data. It
includes samples from two different classes. The left side shows the initial
data and demonstrates that a linear separability is not possible as the two
classes are compound. He solves the problem by squaring the the original
values. Through this action another dimensionality is added to the dataset
which consequently makes a linear split possible. This is illustrated by the
decision boundary on the right side of the figure.

Real-world datasets usually include a large amount of features, however, only
a few of them may be relevant for the target variable. Therefore, choosing
the right approach and operators is a major challenge in machine learn-
ing. Creating arbitrary features may lead to many irrelevant features which
consequently lead to a downgrading in performance, both in speed and in
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Feature Generation Used Why

PCA ⇥ no knowledge about features

Feature combination ⇥ no knowledge about features

Common operators ⇥ no knowledge about features

Polynomial combinations ⇥ no knowledge about features

Table 5: Feature generation methods used in the Case Study

predicting accuracy [65, 37]. Table 6 summarizes the possible feature gen-
eration approaches. Unfortunately, as the features in the dataset provided
by Porto Seguro were anonymized we do not have any knowledge about the
features, thus no feature generation methods are used in the case study.

3.2 Tasks

Machine learning can be applied to various tasks which have different goals
in mind. Classification, as one of the tasks, was already mentioned earlier.
Classification can be used for prediction, where new data is analyzed and
according to its features classified into one of the available groups. The ma-
chine learning tasks especially differ in their goals; for instance, if a company
wants to predict whether or not something will happen, it will rather use
classification, whereas if they want to predict a number they will rather use
regression. Both tasks are part of supervised learning, one of the four ma-
chine learning areas. The other three are unsupervised, semi-supervised and
reinforcement learning. The following subsections explains each of the ma-
chine areas. As the thesis concentrates on a classification task, Chapter 4
takes a closer look at several learning algorithms.

3.2.1 Supervised Learning

James et al. [32] summarize supervised learning as the machine learning
area where we have an observation of predictors and the associated response.
For each data instance of the predictor variables xi, i=1,. . . ,n, there is an
corresponding response yi. Roughly speaking, this means that we have a set
of data (training set) which includes the predictors and the corresponding
response, for instance {(x1,y1), (x2,y2), . . . ,(xn,yn)}. The predictors are called
input or independent variables, and the response is called outcome or depen-
dent variable. The training data is used to teach the learning method how to
estimate the outcome variable based on the inputs. Once new data from the
testing set is presented to the learning method, it is then compared to the
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learned results and an estimate is placed. Supervised learning can basically
be divided into regression and classification.

Regression problems deal with quantitative predictions, whereas classifica-
tion deals with categorical features. If a real estate agency wants to predict
house prices in the next year, it would be a regression problem. However,
if a financial institution wants to predict which customer will default on the
loan, it would be a classification problem [32]. Therefore, identifying whether
a customer will file an insurance claim in the next year is also a classifica-
tion problem, where we use predictors such as gender, age, income, or city to
predict the response "yes" or "no". As we already mentioned in the introduc-
tion, this is a binary classification where we only have two possible classes.
So each instance is either assigned to one class or the other. However, if
multiple classes are available we call it multiple classification [5].

James et al. [32] further explain a well-known problem of supervised learning
called the variance-bias dilemma which deals with the fact that some models
either tend to have high variance or high bias. High variance means that
the model focuses too much on details which can lead to poor generalization
when confronted with new data. On the contrary, high bias means that the
model misses a lot of instances and does, therefore, not accurately predict
the target variable. High variance and high bias are also referred to as over-
and underfitting respectively. Usually, the more flexible a learning method
is the higher its variance and the lower its bias will be. It is quite simple to
find a learning method that has high variance but low bias or high bias but
low variance, but the main challenge is to find a trade-off between the two,
such that the model has both, low bias and low variance. If both values are
low, the predicting accuracy will increase.

3.2.2 Unsupervised Learning

James et al. [32] indicate that unsupervised learning, in contrast to su-
pervised learning, does not include any information about the target vari-
able. Hence, the training set only contains observations of the predictors xi,
i=1,. . . ,n, but no mapping of the corresponding response. Clustering as one
example of unsupervised learning is used for different real-world problems.
They provide the example of a market segmentation analysis which gives us
information about different preferences, habits and attributes that customers
have. Based on the gathered information, we can group each customer into
a certain segment, such as customers who spend a lot and those who do
not. Supervised learning could be done if we already have the information
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describing which characteristics of a customer lead to which spending behav-
ior. However, as this information is not available in an unsupervised context
we can instead cluster the customers with similar attributes into separate
groups. Even though this sounds trivial, it is important to know that real-
world problems usually include observations where an overlap between the
clusters exist. This makes it challenging to accurately group instances into
the right cluster.

3.2.3 Semi-supervised learning

Chapelle et al. [17] indicate that a distinction between supervised and un-
supervised learning is usually possible. Nevertheless, a distinction between
the two machine learning areas is not always guaranteed, as some instances
may include a response variable and others might not. Sometimes gathering
data about the response might not be available or it might be too costly to
identify it. Therefore, it can also happen that datasets only partially include
the target variable. This mix, containing observations with and without a
response, is called semi-supervised learning. However, as the goal of semi-
supervised learning is to decrease the classification error, it still belongs to
the group of supervised learning. Speech recognition is one application where
semi-supervised learning is quite often applicable, as it is easy and cheap to
record a huge amount of speech. However, finding an associated label is
an expensive progress as humans need to listen to all of the recordings and
transcript it. In a semi-supervised setting, unlabeled data is needed in huge
amounts, as it carries less information than labeled data. Therefore, semi-
supervised learning methods need to be fast and efficient and be able to deal
with a large number of observations.

3.2.4 Reinforcement Learning

The last category of machine learning is reinforcement learning. It differs
from the other areas in the sense that there is no data available from which
the algorithm could learn such as in a supervised settings. Nor is there
a possibility to learn through identifying similarities between features and
grouping them together, such as in an unsupervised setting. Sutton and
Barto [67] explain reinforcement learning as the machine learning approach
that learns how to do something through trial and error. It maps situations
to actions. In a reinforcement learning setting we basically distinguish be-
tween two parties: The agent and the environment. If we apply this to the
real-world we could say that learning how to walk or learning how to ride a
bicycle is similar to reinforcement learning. When we learn to ride a bike, we
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Machine Learning Task Used Reason

Supervised
p

The case study deals with a binary

classification task where either one

class or the other needs to be pre-

dicted

Unsupervised ⇥ labeled data is provided

Semi-supervised ⇥ labeled data is provided

Reinforcement ⇥ n.a. for this dataset

Table 6: Feature generation methods used in the Case Study

will probably fall down a couple of times and stand up again until we master
it. The same can be applied for reinforcement learning.

Additionally, they describe that the agent is the computer system that learns
through doing a given task in the environment. Specifically, it means that
the agent learns through its own actions and experience. The environment
reveals its current status to the agent, afterwards the agent performs an ac-
tion which changes the status of the environment. The goal in reinforcement
learning is to maximize the quantitative reward which the agent gathers along
the way. The more it learns during the process, the more it will know about
the environment. It can use this knowledge to remember what it has already
explored in the environment to continuously collect rewards, but also needs
to explore new possibilities to expand its knowledge. However, this results
in a trade-off as exploring new areas can lead to a lower reward. Recently,
reinforcement learning has been used in various fields, including game theory,
robotics or multi-agent systems.

3.3 Models

Models in general can be grouped into three different categories, namely ge-
ometric models, probabilistic models and logical models. They are the results
that are achieved through the learning process of a machine learning task [25].
This section describes each model in more detail.

Geometric Models

A geometric model is created in the instance space, which is the set of all pos-
sible instances, using common concepts available in geometry such as lines,
planes and distances to eventually build the model. More concretely, a geo-
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metric model uses a coordinate system and plots features in a d -dimensional
space. In order to create the final model lines, planes or distances can then
be applied to solve a machine learning task. Geometric models deal with
numerical data, hence other feature types need to be transformed into quan-
titative features [25].

One category of geometric models are linear models, which in general can
be used for all predictive tasks in machine learning, such as classification
and regression. To create a linear model, several learning methods are pos-
sible. However, one example are support vector machines which set a linear
decision boundary between instances where the distance from the decision
boundary to the closest data points is the largest [25]. An alternative to
linear models are distance based models. Distance based models identify
similarities based on the closeness of data points. It is assumed that the
closer two instances are, the more similar they are and thus can be placed in
the same segment. The nearest neighbor classifier is one of the most known
distance based models, that compares new instances with already available
ones and classifies them based on their closeness [25].Chapter 4 describes
support vector machines and nearest neighbors more in detail.

Probabilistic Models

Probabilistic models identify the relation between independent and depen-
dent variables and are used to predict a certain outcome with regard to its
probability [25]. They learn the mapping of a set of predictor measurements
xi to the associated output yi [29]. The goal is then to apply the knowledge
learned from the mapping to a new set of data instances which consist of the
predictor measurements. These are then mapped to a corresponding target
response which is not known at the time of the mapping [29]. Probabilistic
models use probabilities, such as posterior or prior probabilities and like-
lihoods to predict a certain outcome. Posterior probabilities are used if a
feature X has already been observed. Based on this observation the target
variable is predicted. The likelihood observes the probabilities of an event to
occur, such as ’how likely is it that a 20 year old male customer will file a
claim in the next year?’. Prior probability looks at the probability before a
value has been observed, which means we do not have any evidence yet [25].

Logical Models

Logical models are those models that can be easily interpreted by humans
as they use logical expressions to create segments of the instance space. The
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Model Used Reason

Geometric
p

We use the K-nearest neighbor classifier which is a distance

based model.

Probabilistic
p

We want to predict whether a customer will file a claim in

the next year which is a probabilistic model.

Logical
p

We use learning methods such as random forest and boost-

ing which are based on several decision trees and then av-

eraged. Decision trees are logical models.

Table 7: Model types in the Case Study

purer or more homogeneous these segments are, the better the results of the
machine learning task will be. For the segmentation they use non-numerical
features, however numerical values can be transformed into boolean ones by
using thresholds [25].

One example of logical models are tree models, such as decision trees. They
use splits to choose between possibilities and consequently divide the dataset
into segments [25]. More concretely, this means that each split results in
another segment and the deeper it goes the more homogeneous they will be
[25]. For instance, the dataset can be divided into two splits, one grouping
female customers and the other grouping male customers. If a new customer
is male we can just follow the corresponding path. If such a tree contains
all possible features it is called complete. However, such a complete tree
can lead to overfitting (or high variance), which means that the model can-
not generalize well and leads to misclassified results when confronted to new
data, as the model only concentrates on the features it knows [32]. On the
contrary, underfitting (or high bias) means that too less features are taken
into consideration and therefore, even classifying the data in the training set
is prone to errors [32]. Recall that it is important to find a good balance,
such that neither overfitting nor underfitting occurs. It is worth noting that,
tree models have the advantage that they can be used for a wide variety of
tasks, such as for classification, regression and clustering [25].

We basically grouped the models into three categories. However, a model
does not need to only be part of one such group. With that in mind, a
model can be a geometric and probabilistic model as well, depending on the
machine learning task. Table 7 summarizes the three types of models and
indicates if it is used in the case study.

30



3.4 Summary

This chapter looked at features, the different types of them and the possible
statistical analyses that can be conducted with each type. In addition, we
identified that the feature subspace can often be minimized either through
the right selection of the available features or the generation of new features.
Both can lead to improved performance and comprehensibility. Moreover,
we introduced the four different areas of machine learning which differ in the
way how the learning process is conducted. Looking at supervised, unsu-
pervised vs. semi-supervised learning we emphasized that the difference is
the availability of an outcome variable. Reinforcement learning, on the other
hand, is a completely different approach and requires and interaction of an
agent with its environment which often is used in robotics. Finally, we also
looked at models which are the outcomes that learning methods produce.
They can be a combination of logical, geometric and probabilistic nature.

All three areas are very important for achieving good results in machine
learning and according to Flach [25], they can be seen as the three pillars
of machine learning. As the goal of the thesis is to perform practical ex-
perimentations in classification, the next chapter introduces several learning
methods more in detail.

4 Classification Methods
Classification is part of supervised learning and its goal is to correctly clas-
sify data instances into one class. The dataset provided by Porto Seguro is
one example of classification as it focuses on identifying potential claiming
customers. Recall from Section 3.2.1 that supervised learning means that
for each predictor xi there is an associated response yi. A good classification
method needs to perform well on the training data, but more importantly
also on new test data. This is a tough challenge, as one needs to find a
good method for the data and make sure that training the model does not
go too much into detail, as then the algorithm would perform poorly on
new data. Wolpert [72] emphasized that "there is no such thing as the free
lunch theorem", which means that there is no single learning method that
performs best over all other methods for any given dataset. Therefore, the
process of finding the right approach in dealing with a classification problem
is often characterized by trial. This chapter looks closer into some of the
classification methods, starting with simpler one and finalizing it with more
complex algorithms. James et al. [32] provide an excellent overview of the
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classification algorithms, therefore, it is a main source of this chapter.

4.1 K Nearest Neighbor

According to Smola and Vishwanathan [64], the K Nearest Neighbor (KNN)
uses distance measures between two observations (data instances). The label
of an unknown data instance is identified by looking at its k-nearest neigh-
bors. In its most basic form it uses only the nearest neighbor and assigns
the corresponding class of this neighbor to the new instance. However, as
this could include noisy data and wrong classifications, it is more practical
to consider more than one neighbor and assign the majority class of the k
neighbors. If k=3 we would consider the three nearest neighbors and assign
the class that occurred the most often to the new instance.

An often used measurement for evaluating the distance between the instances
is the Euclidean distance that is the square root of the sum all squared dis-
tances on a coordinate systems [25]. If we have two data points in a two
dimensional coordinate system with the coordinates q=(3,6) and p=(4,8)
then the Euclidean distance would be

p
(3� 4)2 + (6� 8)2. If the values are

numeric it is as simple as above. However, categorical values, such as colors,
need to be transformed into a numerical representation. Therefore, Witten
and Frank [71] propose to treat equal categorical values with a distance of 0
and non equal values with 1. That means that the distance between ’green’
and ’green’ is 0, whereas the distance between ’green’ and ’blue’ would be
1. In a more precise way, one could treat closer colors, such as ’orange’ and
’yellow’, with a shorter distance than ’orange’ and ’blue’.

Smola and Vishwanathan [64] further indicate that classification using KNN
can become very computationally intensive if there is a high number of ob-
servations or high dimensionality, as the instances need to be stored in order
to allow a distance based analysis of new data to old one. Therefore, in order
to decrease the computational costs, not all observations may be used, or
the dimensionality may be reduced. Considering only a randomized subset
is a possible approach, as the high dimensional space can be reduced to a
lower one through projection. This allows a mapping, such that the distance
between two points only changes by an acceptable factor. Therefore, the pro-
jection will consequently result in an increased speed and decreased amount
of storage. However, choosing which of the instances to consider in the model

32



is a key challenge in instance-based5 learning algorithms.

4.2 Support Vector Machines

James et al. [32] indicate that in a classification problem, support vector
machines (SVM) are seen as one of the best "out-of-the-box" classifiers. In
the SVM setting, there are, however, three main possibilities or options that
can be used which differ depending on the data. The simplest option is the
maximal marginal classifier that separates the classes through a hyperplane,
which is a linear decision boundary. However, as linear separability is rarely
the case in a real-world scenario, the support vector classifier has been intro-
duced as an extension to the maximal margin classifier. It deals with cases
where a clear linear decision boundary is not possible. Even though the
support vector classifier already showed improved results compared to the
maximal margin classifier, it still, however, leads to poor results if it deals
with non-linearity. Therefore, the support vector machines were introduced
as an improvement of the support vector classifier. SVMs usually perform
well on non-linear classification problems. The following explains each option
more in detail.

An essential tool of support vector machines are hyperplanes, which are used
to divide the data into n classes. In a binary classification setting this means
that a hyperplane is used to identify the decision boundary between two
classes. In a d-dimensional space, a hyperplane represents a subspace of d -1
dimensions. More concretely, a hyperplane in a two-dimensional space is only
a subspace with a single dimension. Hence, it is a line. This would further
imply that in a three-dimensional space a hyperplane is a two-dimensional
subspace, that we call a plane. Data points that lie above the hyperplane
are labeled as instances of one class, whereas instances below the hyperplane
are labeled as instances of the other class.

Maximal Marginal Classifier
According to James et al. [32], there exists an infinite number of possible
hyperplanes for data that can be linearly separated as the decision bound-
ary can be slightly moved and rotated arbitrary times. However, to find the
best place of a hyperplane and consequently the optimal space between two
classes, we can use the maximal margin hyperplane, which is the one hyper-
plane that is the farthest away from the training instances of each class. The

5
Instance-based learning methods store only specific instances that are used for training

the algorithm and compare new instances to the stored onces [3].
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Figure 13: Three possible hyper-
planes [32].

Figure 14: The hyperplane with
the maximal margin between the in-
stances [32].

margin is the minimal distance between the hyperplane and an observation.
If we are looking for the maximal margin hyperplane, we are interested in
the hyperplane that maximizes the margin, hence maximizes the distance
between the observations of both classes and the hyperplane. The maxi-
mal distance between hyperplane and the instances is important, so that the
model generalizes well [5]. If the distance is smaller, new instances could
more likely be wrongly classified. With larger distances the risk of wrong
classifications is minimized [5].

James et al [32] further explain the concept of hyperplanes and the maxi-
mal margin by introducing examples which can be seen in Figure 13 through
15. Figure 13 shows three possible hyperplanes of a dataset and we can al-
ready identify that not all of them satisfy the maximal margin between the
instances. Figure 14, however, shows the hyperplane that has the maximal
margin; which is the largest distance that is closest to the observations. In
Figure 14 the margin is the distance between the dashed lines and the hy-
perplane. Furthermore, the two blue and one purple point are the support
vectors that are the closest points to the hyperplane. Note that the support
vectors are insofar important to the hyperplane as they support the sepa-
ration. This means, if they are moved, the maximal marginal hyperplane
changes as well [32].

Support Vector Classifier
We already mentioned, that the maximum marginal hyperplane requires a
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Figure 15: Separation of the data based on the support vector classifier [32].

linear separability between two classes, as shown in Figures 13 and 14. How-
ever, as linear separability is quite rare in real-world problems, the maximal
margin classifier as a learning algorithm is not the best choice. Furthermore,
as this method enables a perfect partition between two classes, it tends to
overfit the data [5]. Recall that overfitting is not beneficial for a model as
it performs poorly when it comes to the classification of new data as it can
not generalize its learning. James et al. [32] indicate that the support vector
classifier has been introduced as an extension to the maximal margin classi-
fier. This classifier does not overfit the data as it does not perfectly classify
the instances. This means it accepts that some of the instances are misclassi-
fied, so that a better robustness of the overall model is created. According to
Alpaydin [5], most of the new instances can therefore be correctly classified
which consequently leads to a better performance of the algorithm.

Figure 15 shows an example of a support vector classifier fit on non-linear
data that is adopted from James et al. [32]. They classified the data using
a support vector classifier. Looking at the right side of the figure, we can
identify that it classified the instances poorly as no clear separation of the
data instances is achieved. However, we could increase the feature space by
using quadratic or polynomial functions in order to deal with non-linearity
and improve the performance.

Support Vector Machines
James et al. [32] explain that improving the performance by increasing
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the feature space through polynomial functions for example, could, how-
ever, quickly result in an immense increase in complexity as we do not know
how many dimensions need to be added to make the data linearly separable.
Consequently, this would lead to an increase in computational costs. There-
fore, support vector machines have been introduced as an improvement to
support vector classifiers. They are able to deal with non-linear relations
by increasing the feature space automatically with the help of kernels. A
kernel is a similarity function that takes two instances as input and outputs
their similarities by using the inner product [32]. The inner product uses
two values of a vector space as inputs and outputs a number, that could
for instance be the dot product [61]. It is a similar approach to the one
described above, where a support vector classifier enlarges the feature space
by using quadratic or polynomial functions, except that using kernels is less
computationally intensive. Various kernels can be used with support vec-
tor machines, such as linear, polynomial and radial kernels. Using an SVM
with linear kernels leads to the same result as a support vector classifier [32].
The linear kernel evaluates the similarity between two observations using the
Pearson correlation, which measures the linear correlation between an input
and output variable [32].

James et al. [32] further explain that creating more flexible methods can be
achieved through polynomial kernels with a degree of d. However, a degree
of 1 leads to the same results as a support vector classifier or a linear ker-
nel. Another possibility are radial kernels, that look at the distance between
train and test observations. This means that training observations that are
far away in an Euclidean distance do generally not effect test observations,
as the radial kernel only considers nearby instances for its classification [32].
Figures 16 and 17 were adopted from James et al. [32] who improved the clas-
sification from Figure 15 by using polynomial and radial kernels respectively.

4.3 Decision Tree

The decision tree is a hierarchical learning method that uses the "divide and
conquer" strategy and divides the region into n subspaces [71]. Roughly
speaking, it divides the entire data into different sections, using some in-
dependent attributes as splitting criteria [71]. Each decision tree consists
of decision nodes and decision leafs. The nodes are all splits within the
decision tree that are not the resulting outcome [5]. With that in mind, clas-
sifying the correct class of a new instance means that the evaluation starts at
the root of the decision tree and goes deeper down the nodes until the final
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Figure 16: A polynomial kernel of de-
gree three applied to a SVM [32].

Figure 17: A radial kernel applied to
a SVM [32].

outcome, which is the leaf, is met [5]. The goal of decision trees is to find the
optimal split, with the goal of maximizing the purity of a node [71]. Recall
that the maximal purity of a node is achieved if the node contains only one
class. A well-known measure of identifying a good split is the cross-entropy
[5, 32]. An alternative measure of the split impurity is the gini index. Both,
gini index and cross-entropy, can range between 0 and 1. The purer the split
is the smaller the number of the both will be [32]. These two measures can
be used to prune the tree and increase the quality of the splits [32].

According to Witten and Eibe [71], one main advantage of decision trees
is that it can deal with all feature values, as it transforms the values into
splits having two or more directions. For instance, a quantitative feature can
take on a binary split, such that all data instances can either walk down the
less than or greater than way. Alternatively, an additional direction, such as
equal to, could be introduced if a certain value is important. On the contrary,
qualitative features could divide the observations into the possible categories.
For example, if the gender is considered to be important, the decision tree
could split the observations into female and male. A qualitative feature with
more than two possible values could likewise use the available values as splits.

James et al. [32] indicate that decision trees have many advantages, such
as that they are easy to read and interpret for humans as they are logical
models. Furthermore they can be graphically visualized and often read from
non-experts as well. Lastly, as was mentioned above, decision trees are able
to work with all feature types, which means that we do not need to create
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dummy variables. However, sometimes other learning methods have a better
predicting power and outperform decision trees. Furthermore, decision trees
are very sensitive to the training data, which means that the results may
differ if the training data is changed. To improve the prediction power of
decision trees, we can create many trees and combine them. This approach
is referred to as ensemble methods and the main goal is to combine weak
learners so that strong learners are developed. Through ensemble methods
such as bagging, random forest and boosting, decision trees can be aggregated
resulting in a stronger performance.

4.4 Bagging

Decision trees are a quite flexible learning method and hence need to deal
with high variance. Differences in the training data result in differences in
the model [32]. Recall from Section 3.2.1 that high variance can result in
overfitting which leads to poor classification on unseen data. Therefore, we
can use bagging, also called bootstrap aggregation, in order to decrease the
variance.

According to Flach [25], bagging is a powerful method in the context of de-
cision trees as the predictive power of a single tree can be improved through
combining many of them and averaging the results. However, bagging can
be applied to many other supervised learning methods as well. Bagging cre-
ates n different training subset which are constructed by selecting different
observations of the training set. The observations within each subset might
be picked more than once, thus there might be duplicates but it ensures that
each model is different. The individual decision trees are each trained on
different subsets which means that if we have ten decision trees we also have
ten different training sets. Consequently, we also receive ten different mod-
els. In the case of regression, the mean is taken to identify the corresponding
label. However, for classification purposes the majority vote is taken in order
to predict the label. That means if we query an observation x we look at the
responses among the n subsets and take the class that occurred the most of-
ten. Additionally, bagged trees do not necessarily need to be pruned as using
multiple trees with different training sets decreases the variance and hence
the risk of overfitting. Although bagging leads to improved performance
compared to a single decision tree, it also decreases the interpretability of
the model in contrast to a single decision tree [32].

James et al [32] indicate that each of the n subset only include a fraction of
the overall training data and some might be duplicates. The remaining ob-
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servations are called out-of-bag (OOB) observations. These remaining OOB
observations can be used to compute the test error of the model. If we want
to predict the response for the ith observation, we can use all the bagged
trees in which this ith observation was OOB. Afterwards, the majority vote
is taken and then the classification error can be computed to measure the
test error, which is a measure to evaluate how accurate the model classifies
on new data (test data). This is a valid approach for calculating the test
error, since we use the OOB observation that was not used to fit the model.

4.5 Random Forest

According to James et al. [32], a random forest leads to improved results
over bagged trees. Although bagging decreases the variance through com-
bining many decision trees, it still tends to repeatedly use strong predictors
over weak ones in each subset, as it tries to minimize the error. Therefore,
strong predictors are more frequently used at the beginning of each decision
tree. Hence, the predictions tend to correlate. Random forests similarly
take different data instances of the training dataset and create n different
subsets, but when they train the model, only a certain number of randomly
selected predictors is taken. In contrast, bagged trees use all of the predictors
and strong predictors are usually among the first splits of each decision tree.
Therefore, the trees tend to correlate with each other. The amount of random
predictors for each decision tree can be specified, but a usual default value is
m =

p
p, where m is the the number of the randomly selected features and p

is the number of all features in the dataset. Moreover, a random forest which
uses the maximal amount of features in each decision tree can be compared
to bagged trees. They further point out that a small number of predictors is
helpful when dealing with a lot of correlated predictors. Nevertheless, there
are similarities between bagging and random forest. For instance, the out-of-
bag error can likewise be used to evaluate the model performance. However,
the main difference to bagging is the choice of the predictors, since random
forests improve the accuracy of the model by using random, uncorrelated and
weak predictors.

4.6 Boosting

Boosting, similarly to bagging, can be applied to any statistical learning
method for regression and classification [32]. However, we look at boosting
in the context of decision trees, to align it with bagged trees and random
forest.
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In Section 4.4 we discussed that bagging builds n subsets of data obser-
vations, which are taken out randomly and with replacement6 from the orig-
inal dataset. A decision tree is then fit to each subset and the predictions
are aggregated, finally resulting in a single prediction. According to James et
al. [32], boosting works similar to bagging as it also creates n numbers of sub-
sets, where the first subset of observations is selected randomly. However,
the further process differs as boosting additionally puts focus on wrongly
classified instances. In detail, after the first subset is created, a decision tree
is fit on the data. Then all observations from the initial training dataset are
used to evaluate the performance of the first decision tree and often some of
the observations will have a significant error. Afterwards, a second dataset
using randomly selected observations is built, but in addition some of the
misclassified instances are considered as well. The decision tree is again fit
to the data and the performance is evaluated using the original dataset. This
process is repeated until the number specified trees is reached. As we focus
on instances that were misclassified at each iteration, boosting is considered
to be a slow learner. However, evidence shows that slow learners also lead to
better performance compared to other methods.

Even though bagging and random forest are not prone to overfitting, boost-
ing can overfit if the number of trees is too high. Therefore, when working
with boosting we need to consider three important parameters and the num-
ber of trees is one of them. In order to identify the number of subsets we
can use cross-validation, a method that is typically used for the evaluation
of model performance or as a resampling method. Secondly, boosting re-
quires a learning rate which defines the speed of learning. Usually, it takes
on values of 0.01 and 0.001. The slower the algorithm learns the less prone
to overfitting it is. The last important parameter is the number of splits of
each decision tree, as it defines the complexity. The more splits a tree has,
the more likely it is to overfit. Often, only a single split is used in boosting
which is then called a stump rather than a tree. Generally, it is sufficient to
only use stumps instead of more complex trees as boosting considers wrongly
classified instances in the next iteration. In addition, less splits can increase
the comprehensibility of the learning method.

4.7 Cross-Validation

According to Alpaydin [5], a common challenge in machine learning is the
trade-off between training and testing data. Recall from Chapter 2 that train-

6
Data observations can be picked more than once.
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ing data is used to train the model and the test data to apply the learned
knowledge on unseen data. It is important to know that we can only analyze
the performance of the model once it is applied to unseen data. However, the
test dataset is usually not initially used to check the performance of a clas-
sifier, rather another technique is used. By applying cross-validation we can
divide the training data into two sets - one for training the learning method
and the other as a "representation" of the testing dataset to evaluate the
performance. This is the validation set which we also introduced in Chapter
2. It is beneficial to evaluate the model on unseen data as this is a good indi-
cator for future events. For instance, cross-validation could split the training
dataset into a 70:30 proportion, where 70% are used for training and the re-
maining 30% for validating. However, this indicates that if an instance is in
the training set in cannot be in the validation set and vice versa. Therefore,
an extension to cross-validation is k-fold cross-validation that partitions the
training data into k bins, which are equally sized sets of data observations. K
can be any number greater than two but generally it is either ten or thirty.
In k-fold cross validation we use one of the k bins as the testing set and
the remaining k-1 as the training data. This process is eventually repeated
k times so that each bin was used as a validation dataset. With this in
mind, a dataset containing 2,000 instances a 10-fold cross validations splits
this dataset into ten equally sized bins, each containing 200 instances. The
first 200 are used as a validation dataset and the remaining 1,800 are used
as the training set. The model is fit on this data and validated on the 200
instances. This is repeated ten times and at the end the average of the ten
test performances is taken, resulting in the final performance. K-fold cross
validation requires more computational time because the learning process is
repeated k times. However, it eventually increases the performance of the
learning method.

He further indicates that an extreme case of k-fold cross-validation is leave-
one-out cross-validation that uses, instead of k equally sized sets, only one
instance as testing data and the remaining instances as training data. Sim-
ilarly, splitting the data into training and testing set is repeated k times,
where k=N and N is the total amount of instances in the dataset. However,
k-fold cross-validation is usually used if labeled data is difficult to obtain.
Again, assuming a dataset with 2,000 instances, we would run the learning
algorithm 2,000 times so that each instances is used as a test set. At the
end, the average of the error is calculated leading us to the final performance
evaluation.

A classification task can be solved by many different algorithms, some of
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them have been introduced in this chapter. Depending on the dataset, one
learning method can be better than another. Unfortunately, as this depends
on the data it needs to be tried out which method leads to the best results.
Nevertheless, ensemble methods have shown to be good approaches, as they
combine multiple methods and average the outcomes, usually resulting in a
better performance. The next chapter applies several of the above mentioned
methods to the dataset provided by Porto Seguro.

5 Application of Classification Techniques
Since we use Action Research as our main research methodology, this chapter
is structured accordingly. It includes three main steps: Look, Think and
Act, the detailed steps can be reviewed in Figure 1 of Chapter 1.3. At
the beginning of this chapter the different evaluation metrics that we use
in the case study are introduced, while the further sections subsequently
explain the approaches conducted in the practical assessment. They are
grouped in iterations and follow the Action Research steps. From Section 1.2
we can recall that our dataset was provided by the Brazilian car insurance
company Porto Seguro which published historical data on Kaggle and asked
the community to predict which customer is more likely to file a claim in the
next year.

5.1 Evaluation Metrics

Accuracy, precision, recall and f-score are well known and used evaluation
criteria of classification problems [70]. This chapter provides a definition and
an example for each one of them, as they are used for evaluating the perfor-
mance of the classifiers of the case study in Chapter 6.

For a binary classification problem the results usually fall into four cate-
gories: true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN). Often, these four values are represented in a confusion

matrix, an example of it can be seen in Table 8. The diagonals (TP and
TN) in a confusion matrix are the values that are correctly predicted. With
the help of these four categories accuracy, precision an recall can be calcu-
lated. True positives are the samples that are correctly predicted. False

positives are data samples that are classified as true but in reality are false.
True negatives are observations that are indeed false, whereas false neg-

atives are data instances that are wrongly classified as false. Accuracy is
defined in Definition 1 [11].
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Table 8: Confusion matrix

Definition 1. Accuracy.
The accuracy is the proportion of correctly classified results among all
instances.
Accuracy is calculated by TP+TN

TP+TN++FP+FN .

In some classification tasks accuracy can give reliable information about the
performance of a model. However, it can also lead to a false impression of
the performance because in unbalanced datasets the accuracy can be high
although no predictions on the minority class have been done. To be more
clear we can look at Example 1.

Example 1. Accuracy.
We have 100 insurance holders and only 10 of them should be classified
as filing a claim. If an algorithm classifies all of the customers as negative
then its accuracy is 90% although none of the claiming customers was
identified.
Accuracy is calculated by 90+0

90+10+0+0 = 0.9.

If the dataset is unbalanced as in Example 1, it gives a false impression
of the classifier’s performance. Here, no customer has been identified to
file an insurance claim; however, we still achieve an accuracy of 90%. This
phenomenon is called the Accuracy-Paradox [73]. Therefore, precision, recall
and f-score are used to evaluate the correctly predicted observations. The
terms are defined in Definitions 2, 3 and 4 [68].
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Definition 2. Precision.
Precision is the fraction of the total number of samples that are relevant
among the total number of retrieved samples . Precision is calculated by

TP
TP+FP .

Definition 3. Recall.
Recall is the fraction of the total number that are relevant among the total
number of relevant samples in the entire data set. Recall is calculated by

TP
TP+FN .

To be more concrete, we can look at an example:

Example 2. Precision and Recall.
Amongst 100 insurance holders in the training data 30 customers should
be classified as positive of filing a claim. The algorithm identifies 25 cus-
tomers as positive, whereas only 10 of the 25 are indeed correct (TP) and
the other 15 are wrong (FP). 20 relevant customers are not identified (FN)
and the other remaining 55 are correctly classified as not relevant (TN).

Precision is calculated by: 10
10+15 = 0.4

Recall is calculated by: 10
10+20 = 0.33.

Based on the domain, we can focus on either improving precision or recall. We
assume that an insurance company is probably more interested in increasing
the recall, as they want to identify as many customers as possible of filing
a claim. On the contrary they will more likely accept customers that are
wrongly classified as risky rather than misclassifying customers as not risky.
Often, improving recall means decreasing precision. Last but not least, we
can calculate the f-score.

Definition 4. F-score.
The F-score is the average of precision and recall, to better compare the
two learning methods against each other. F-score is calculated by
2 ⇤ precision⇤recall

precision+recall .

Using the same setting as in Example 2, we can calculate the f-score from
the results that were received:

44



scale AUC Performance
0.5 - 0.6 poor
0.6-0.7 fair
0.7-0.8 good
0.8-0.9 very good
0.9-1 excellent

Table 9: AUC value interpre-
tation

Figure 18: ROC curve with 0.95 AUC [32]

Example 3. F-score.
F-score is calculated by: 2 ⇤ 0.4⇤0.33

0.4+0.33 = 0.36

According to James et al. [32], it is also common to use the Area Under the
Curve (AUC), which shows the overall performance of a classifier. It uses
the true positive and the false positive rate and puts it against each other
to define the performance. Furthermore, the AUC is often plotted with the
help of a Receiver Operating Characteristic curve (ROC curve), an example
can be found in Figure 18, that shows the performance of a classifier which
achieves a good AUC value of 0.95. The figure was borrowed from James
et al. [32]. The true positive rate and the false negative rate are defined in
Definition 5.

Definition 5. Sensitivity and Specificity.
The true positive rate is equivalent to the recall and also called sensitivity.
The false positive rate is also called specificity and shows how many of the
true negatives have been identified.
Specificity is calculated by: TN

TN+FP

According to Allaire [4], the AUC value can be interpreted according to the
scale in Table 9. We can see that the value can range between 0.5 and 1 and
the higher it is the better the classification algorithm performs. Using the
same setting from Example 2 we can calculate the false positive rate, which
is seen in Example 4.
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Example 4. Specificity.
The specificity is calculated by: 55

55+15 = 0.78

5.2 Iteration 1

Iteration 1 includes a detailed analysis of the dataset and its features. It
uses statistics and visualizations to explore the value ranges, frequencies and
a potential impact on the outcome of the target variable.

5.2.1 Look & Think

The Look step of the Action Research process includes defining the problem
and gathering information on it. However, the problem was already defined
by the Kaggle competition and focuses on identifying which customer will
place an insurance claim in the next year. We were provided with the his-
torical data of customers and we were informed about the facts that the
data was anonymized, categorical features were already transformed into a
quantitative scale and missing values were categorized as "-1". Additionally,
more data was gathered through analyzing discussions and implementations
from other contributions on Kaggle or forums.

As part of the first iteration, we looked at many different classification algo-
rithms and came to the conclusion that a random forest is a good choice for
our analysis for the following reasons: Ensemble methods, which are meth-
ods that combine different models, are considered one of the most powerful
methods in machine learning as they use a combination of models rather than
a single model [25]. In addition, random forests include a certain amount of
randomness which can benefit the overall model by reducing noise. Further-
more, in statistics it is also well known that averaging a set of measurements
can lead to more stable results than only a single measurement [12]. Lastly,
it is claimed that ensemble methods do often receive a higher accuracy and
are therefore often outperforming single learning methods [8].

Initially, we planned to use a Jupyter notebook7, which is an Integrated
Developer Environment (IDE), locally on our machine. It provides you with
different features, such as the integration of HTML. However, due to perfor-
mance issues we decided to directly work on a Jupyter notebook in Kaggle
as each participant has the opportunity to work online on one notebook per

7
http://jupyter.org/

46



f o r f in t r a i n . columns :
i f ’ bin ’ in f or f == ’ target ’ :

l e v e l = ’ binary ’
e l i f ’ cat ’ in f :

l e v e l = ’ nominal ’
e l i f f == ’ id ’ :

l e v e l =’ id ’
e l i f t r a i n [ f ] . dtype == f l o a t :

l e v e l = ’ i n t e r va l ’
e l i f t r a i n [ f ] . dtype == in t :

l e v e l = ’ ord ina l ’

Listing 1: Grouping of feature type

competition. The participants can decide whether they want to publish their
notebook within the competition or keep it as private. We created a repos-
itory on Github8 so that the work can be accessed. For our practical part
we used python and mostly made use of the scikit-learn (short: sklearn)9,
pandas10 and numPy11 libraries. As we worked on the online notebook, we
did not need to download the dataset and upload it into a locally stored note-
book. The data was made available on the homepage, therefore, we could
use it from there. Our first step was to read the dataset into our notebook
by using the pandas read statement:

train = pd.read_csv(’../input/train.csv’)

We assigned the training data to the variable "train" and stored it as a pan-
das data frame12 as can bee seen from the line of code above. This allowed us
to access many methods for our analysis, which are described further down.
We had fifty-nine features in the dataset, including the ID and the target
variable. We already mentioned that Porto Seguro rephrased the names of
the features to ensure the privacy of its customers. Therefore, we did not
know what the features exactly were in the real word, but we knew that some
features belonged to the same group through the prefix in the feature name.
Table 10 shows a summary of the prefixes, which was clarified by Adriano
Moala [48] within a discussion on Kaggle. By analyzing the table we can
conclude that there were features which provided data about the drivers,
cars, regions and some calculated features. It was further explained that the
dataset included binary, categorical, continuous and ordinal features.

By using the head(10)13 function from the pandas library we could view the
8
https://github.com/SanjaJo/PortoSeg

9
http://scikit-learn.org/stable/

10
https://pandas.pydata.org/

11
http://www.numpy.org/

12
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

13
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.head.html
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Figure 19: First ten rows of training data

Prefix Meaning

ind individual, driver

car car

reg region

calc calculated features

bin binary features

cat categorical features

no prefix continuous or ordinal features

Table 10: Feature labeling

first ten rows of the training data. This allowed us to conduct a first anal-
ysis of the feature names, its values, and ranges and can be seen in Figure 19.

As a next step, we grouped features of the same type together to enable
a better interpretability. More concretely, all binary, categorical, continu-
ous and ordinal features were put into individual groups. The code for the
grouping was adopted from Bert Carremans [15] and can be seen in Listing 1.
After the grouping, we assigned each level to a new variable, which allowed
us to analyze the individual feature types.

Statistical Analysis
In Section 3.1.1 we introduced some statistics, such as the mean or the mode,
which are used to analyze data and which are an important step to get famil-
iar with the data. Figures 20 and 21 show an excerpt of the describe()14

function from the pandas library to get familiar with the distribution of the
data. The results seen in Figures 20 and 21 give us already an idea about the
data. More concretely, we can see that some of the features have a missing
value as the minimal value is -1. From the maximal value we can derive the
scale of each feature. For instance, we can see that ordinal values have higher

14
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html
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Figure 20: Statistical analysis of continuous features

Figure 21: Statistical analysis of ordinal features

ranges compared to the continuous features.

Visualization
Visualization is another important step in order to get familiar with the data,
as for example histograms show the frequency of each value. Furthermore, we
used box-whisker-plots to identify the median and possible outliers of each
feature. We analyzed all feature groups in the same way, however, to ensure
readability we included only the categorical features. The other plots can be
found in Appendix A.

In Figure 22 we can see that there are values in each feature that occur
more often than the others. The histograms also show us that ps_car_03
_cat and ps_car_05_cat have more missing values than any other value.
These two features require a further analysis - if they do not influence the
target variable, they could be discarded due to the fact that more as the
half of the information is missing. Some of the other features have missing
values as well but the amount of them is not significantly high. Furthermore,
ps_car_10 _cat stands out, as category one seems to be present in almost
all data samples. Similarly, a comparison of this feature to the target variable
could give us more information about the importance of it.

Figure 23 shows us the first and third quartile, the median and identified
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Figure 22: Histograms of categorical features
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Figure 23: Boxplot of categorical features

outliers. Note that the middle line is the median, the line below is the first
quartile, the line above is the third quartile and the top short line is the
fourth quartile. The features which have a lot of missing values use -1 as
either the median or first quartile, whereas the other features treat them as
outliers. Furthermore, we can see that the value frequency of some of the
features is more monotonous than others. The features which are plotted
only by the median, such as ps_car_02_cat have the same values in the
first, second, third and fourth quartile.

To analyze the influence of each feature on the target variable, we used his-
tograms to identify values that are more likely to effect the output variable.
For comprehensibility reasons, this part includes the results of all features
which are shown from Figure 24 through Figure 27.
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Figure 24: Influence of ordinal features on the target variable
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Figure 24 shows all ordinal features that are evaluated based on their influ-
ence on the target variable. We can see that the feature ps_calc_04 has
almost no influence on the target variable as the individual values of the fea-
ture are almost equal. The same can be said for ps_calc_08 and ps_calc_09.
Furthermore, the features ps_calc_07, ps_calc_13, ps_calc_14, ps_ind_03
and ps_ind_14 appear to have strong influential values as the fraction to
the target variable is comparably high.

Looking at the categorical features in Figure 25 we can see that the fea-
ture ps_car_01_cat has a very high impact on the target variable if the
value is missing. This can be concluded from the peak at -1. The same
can be observed for almost all other categorical features with missing values
namely: ps_car_07_cat, ps_car_09_cat, ps_ind_02_cat, ps_ind_04_cat
and ps_ind_0 5_cat. This led us to believe that if those five features are not
recorded, the customer is more likely to file a claim. To further analyze the
six features, we compared them to their frequency of occurrence which we
can see in the histograms of Figure 22. All of the six features have a very low
amount of missing values, yet they are of very high importance to the model,
which is why we did not replace them and kept them as -1s. Furthermore,
the feature ps_car_10_cat, which almost only had the value 1 in Figure 22,
seems not to have any impact on the target as all possible values are almost
equally influencing the outcome. This can be seen on the similar size of the
bars.

Looking at the distributions of the binary features in Figure 26 we can see
that a lot of them seem not to be relevant to the outcome of the target vari-
able as most of them have equally sized bars. Especially all binary calculation
features are almost equally distributed and hence do not have a strong influ-
ence whether a customer filed a claim. On the contrary, ps_ind_13_bin and
ps_ind_17_bin seem to influence the outcome as the value 1 has a higher
impact on the outcome.
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Figure 25: Influence of categorical features on the target variable
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Figure 26: Influence of binary features on the target variable
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Figure 27: Influence of continuous features on the target variable

Figure 28: Influence of continuous features on the target variable

As the continuous features include high ranges, we separated the analysis
into one group with features that could be analyzed easily and another one
for those that are more difficult to analyze. Figure 27 shows the analysis of
those features which have a manageable amount of values, whereas Figure
28 shows the features which require a more detailed analysis. Looking at
Figure 27 we see that especially the calculation features seem not to have
any impact on the outcome, as they are quite equally distributed. Customers
that have higher values of the features ps_car_15 and ps_reg_02 were more
likely to claim than those with lower values. The listing below explains the
conclusions derived from a more detailed analysis of the features from Figure
28.
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• Ps_reg_03 :
78% of the customers filed a claim if the feature was above the mean.
46% of the customers filed a claim if the values fell above the mean but
below the third quartile.

• Ps_car_12 :
55% of the customers filed a claim if the value was above the mean.
However, only 5% of the customers filed a claim if the value was between
the mean and the third quartile, which leads us to the conclusion that
high values are more prone for claiming.

• Ps_car_13 :
50% of the customers filed a claim if the values were above the mean
and 16% were positive if the value was between the mean and the upper
quartile.

• Ps_car_14 :
91% of the customers claimed if the feature had a value above the
mean. Even if we limit the range and look at the distribution between
the mean and the upper quartile, there were still 62% of the customers
who filed a claim.

5.2.2 Act

After the analysis and interpretation of the features, it was important to con-
duct some data-preprocessing steps before creating the model. This step was
important so that comprehensibility could be increased and dimensionality
decreased. Furthermore, it allowed us to speed up the learning process as a
feature subset was selected rather than the initial feature space.

In the previous chapter, we heard that some features have missing values.
Figure 29 shows the percentage of the missing values per feature. The code
for this analysis was adopted from Bert Carreman’s [15] notebook on Kag-
gle. Furthermore, Table 11 summarizes our approaches of dealing with the
missing values.

As we can see from Table 11 almost all categorical features that include miss-
ing values have a high impact on the target variable. Therefore, we did not
replace them and kept the -1s. The two categorical features (ps_car_05_cat
and ps_car_03_cat), that have a very high amount of missing values, do
not influence the outcome variable. Therefore, we dropped them from our
dataset. The other missing values were replaced by the mean or the mode,
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Figure 29: Summary of percentage of missing values within each feature

depending on whether the feature was ordinal or continuous. The sklearn
library provides the function Imputer()15, which allowed us to specify the
type of replacement and the value that indicates a missing instance. Ap-
plied to our dataset we needed to specify the missing values as "-1" and the
imputer strategy to "mean" or "most_frequent", depending on whether the
feature was continuous or ordinal.

Recall that a reduced feature space can lead to a more accurate predic-
tion, which is why data selection is an important step. Therefore, we needed
to look at the feature importance and identify those features that were not
valuable to the model. As we wanted to compare different approaches with
each other, we decided to focus on a filter approach for feature selection first.
The sklearn library provides the function VarianceThreshold()16 that dis-
cards features that have low variance, as it is assumed that those values are
more constant and have low predictive power. Using a variance threshold
is one way of performing a filter approach [58]. We used the function to
identify the features with too low variance and set the variance threshold to
90%. This means that if the same value is in 90% of the samples the feature
is dropped. Before agreeing on the 90% we worked with different variance
threshold values to identify differences in the results. The default threshold
is 0.0, however, our dataset did not include any feature that had the same
value in all the samples. When we set the threshold to 95% it only returned
three features. A threshold of 85% returned twenty features. However, we
wanted to select a feature subset that was smaller than the initial feature
space, but at the same time it should keep enough features. Therefore, a

15
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html

16
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
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Feature Influence
on target

Action

ps_ind_02_cat high keep missing values
ps_ind_04_cat high keep missing values
ps_ind_05_cat high keep missing values
ps_reg_03 low replace by mean
ps_car_01_cat high keep missing values
ps_car_01_cat medium keep missing values
ps_car_03_cat low drop - due to high percent of miss-

ing values
ps_car_05_cat low drop - due to high percent of miss-

ing values
ps_car_07_cat high keep missing values
ps_car_09_cat high keep missing values
ps_car_11 low replace by mode
ps_car_12 low replace by mean
ps_car_14 low replace by mean

Table 11: Summary of missing values and the action of dealing with them

Figure 30: Features selection based on low variance as filter approach

threshold of 90% seemed reasonable as fourteen variables were identified to
have a too low variance and hence were dropped from further analysis. Fig-
ure 30 shows which features were dropped. We continued our analysis with
a total of forty-one features, excluding the target and id. Another important
step in the data-preparation is the transformation of features that we intro-
duced in Section 3.1.2. As our dataset included many categorical features it
was important to create dummy variables for each of the possible values. The
pandas library provides the function get_dummies()17 which easily produces
the additional variables. Figure 31 shows the code that is used to create these
variables. First we created an array to save all categorical features that were
in our dataset and then we applied the function.

After transformation, we received a total of one hundred ninety-four fea-
17

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
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Figure 31: Code to create dummy variables for all categorical features

tures because ps_car_11 _cat had one hundred four categories in total.
Furthermore, we dropped the ID from the training data as it did not give
us any insights. The target variable needed to be assigned to an individual
variable that is not part of the training set. This allowed us to treat the
remaining variables as predictors and the target variable as response which
was necessary for training the model. For more details on the target and
response variables recall Section 3.2.1. Table 12 summarizes the change his-
tory of various approaches that were conducted in Iteration 1. All five runs
include the feature subset that was identified using the variance threshold.

In Section 4.6 we introduced cross-validation as a re-sampling method that
is quite often used in machine learning. In the first run we split our training
data into a train and validation set using a 70:30 ratio, where 70% of the
data falls into the training and 30% into the validation test set. In the other
runs we changed our approach to a 5-fold cross validation as it is claimed
to achieve better performance. Furthermore, as an initial evaluation crite-
rion we used the out-of-the bag (OOB) score to estimate the performance
of the random forest. The random forest classifier18 in sklearn provides the
parameter oob_score which can be used to evaluate the score of the random
forest. Recall that a random forest consists of several decision trees that use
random subsets of the initial training data. The samples that are not used
for each subset are validated against the results.

From Table 12 we can see that the initial approach using random forest
with one hundred trees and a maximum depth gives us an OOB score of
97%. As we assumed that the score was too high, given the fact that almost
no changes of hyper parameters were conducted, we chose a 5-fold cross val-
idation in the second run to see the difference and achieved a score of 99.8%
which led us to believe that our random forest was overfitting.

18
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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CV Method Parameters OOB_score
1. 70:30 RF 100 trees, max_depth=5 97%
2. 5-fold RF 100 trees, max_depth=5 99.8%

3. 5-fold RF 100 trees, max_depth=5,
max_features=0.3

97%

4. 5-fold RF 100 trees, delete max_depth 94%
5. 5-fold KNN default 93%

Table 12: Change history of Iteration 1

From the literature review we know that a random forest has the advan-
tage that it is using random features for each decision tree, however, if we
do not specify the number of maximum features upfront, it uses (by de-
fault) the square root of the number of features. In our case, there were one
hundred ninety-four features and taking the square root results in approxi-
mately thirteen features. To increase the possible features we, therefore, set
the parameter for maximal features to 0.3 and achieved an OOB score of 97%.

To be sure about the assumption that the model is overfitting, we deleted
the maximal depth parameter such that the tree could grow as deep as pos-
sible. Consequently, we expected that the performance would increase as the
subsets after each split were more homogeneous. The score decreased to 94%
as can be seen in Table 12.

We decided to create another model using another classifier to compare the
results. We suspected that if the new method reaches a similarly good perfor-
mance then there needs to be another reason why the OOB score is so high.
We wanted to use a learning method that usually performs well, however,
it should not outperform a random forest classifier. The K-nearest neighbor
classifier seemed to be a good other option for comparison as it is a sim-
pler algorithm and uses the Euclidean distances to classify the observations.
Hence, our assumption was that the method will give us worse results than
the random forest. After applying the KNN to the dataset we achieved a
score of 93%. Although the score is lower compared to the random forest
it is still too high given that no changes on the hyper parameters were con-
ducted. Looking at the confusion matrix of the KNN classifier, we recognized
that the amount of true positives, which are values that are correctly pre-
dicted as 0, was very high and that no true negatives were identified. In
the literature review we came across imbalanced datasets which could be the
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root of the problem. By analyzing the ratio between customers who claimed
a file and those who did not, we recognized that only approximately 3% of
the dataset included customers who claimed. This means, that even if the
model predicted that all customers will not file a claim, the OOB score would
still be around 97%.

5.3 Iteration 2

In Iteration 1 we conducted several classification approaches using random
forest and K-nearest neighbor. We initially thought that the models were
overfitting due to a high OOB score. However, after analyzing the distri-
bution of the dataset we identified that the root cause of it was due to an
imbalanced dataset.

5.3.1 Look & Think

Imbalanced datasets require a different way of handling compared to balanced
datasets. Several possibilities exist to make prediction more valuable. One
way is to use another performance metric, such as precision, recall or f-
score [13]. Furthermore, we can resample our dataset, either oversample or
undersample it. In the case of oversampling, we create more instances of the
class that is too small. On the contrary, undersampling refers to working
with a reduced sample set of the majority class [13].

5.3.2 Act

As a first approach we were oversampling our dataset using a well-known
method called SMOTE, which is the abbreviation for Synthetic Minority
Oversampling TEchnique [18]. SMOTE looks at the examples from the
minority class and ignores those from the majority class. It looks at one
instance, takes its k nearest neighbors and creates new instances halfway be-
tween the k selected neighbors and the initial instance. This is repeated for
all the instances from the minority class. However, the drawback of SMOTE
is that the inserted instances will always remain in the same area and cannot
be inserted across the dataset [23].

We used the package of the imbalanced-learn API19 which provides a func-
tion that performs the SMOTE method. Through the function in Listing 2

19
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_

sampling.SMOTE.html#examples-using-imblearn-over-sampling-smote
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Feature set CV Method Parameters AUC
1. Variance

Threshold
70:30 RF 500 trees, default 0.50

2. all 58 features 70:30 RF 500 trees, default 0.50

Table 13: Change history of Iteration 2

X_resampled , y_resampled = SMOTE( ) . f i t_sample ( x_train , y_train )

Listing 2: Oversampling training data

we could assign the predictors and the label from the training set to a re-
sampled set of predictors and labels. Then we run a random forest, initially
using default parameters, with five hundred trees and fit it on the re-sampled
predictors and labels from the training dataset. We predicted the outcomes
using the predict()20 function from sklearn and plotted the confusion ma-
trix to analyze the predictions versus its actual results. Unfortunately, our
model did not perform well even though the instances of the minority class
were increased. If we look at the confusion matrix we can see that the ran-
dom forest did not predict any true negatives at all, which means that no
customer has been identified as filing a claim. As an additional metric to
the confusion matrix we used the AUC and plotted the ROC curve that vi-
sualizes the overall performance. The code for plotting the ROC curve was
adopted from a blogpost [52]. The ROC curve with the corresponding AUC
value of the current model can be seen in Figure 32. The AUC is 0.5 as there
is only the diagonal in the graph. Recall that an AUC value of 0.5 does not
have much predictive power and can be compared to random guessing.

To deal with the low predictive power of our classifier, we decided to look for
similar datasets that also used SMOTE as a oversampling method and com-
pare the approaches. We found another Kaggle competition21 that looked
at fraud detection and used random forest for an imbalanced dataset. They
achieved very good results using random forest without changing any pa-
rameters. As their random forest achieves good results without doing any
pre-processing steps, we decided to try the same and compare the results that
we got using a random forest with pre-processing steps and without. Keep
in mind that the results from a random forest with pre-processing steps were
already presented and can be retrieved from Table 12 and 13 (step 1). By

20
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

21
https://www.kaggle.com/chtaret/fraud-detection-with-smote-and-

randomforest/notebook

63



Figure 32: ROC curve of oversampled dataset using Random Forest

keeping the initial fifty-eight features, we received a slightly better AUC then
the random forest from the first run. Nevertheless, the AUC was still ap-
proximately 0.5 which means that the classifier still performed poorly. As the
difference of the AUC values of the two classifiers is small we do not include
the ROC curve here.

5.4 Iteration 3

In Iteration 2 we used the initial dataset without any pre-processing in order
to compare the results when pre-processing steps are conducted. Using all
initial fifty-eight features did not give us any significant improvement.

5.4.1 Look & Think

To deal with the low classification performance we needed to change our
approach and consider other possibilities of performing the classification task.
Although random forest often performs well, there are boosting methods that
are known to achieve a better performance. Caruana and Niculescu-Mizil [16]
used ten different classification methods on eleven datasets and compared
their performance to each other. In brief, they came to the conclusion that
boosting and random forest achieved the best results. Given the fact that
boosting puts weight on wrongly classified instances, we conjectured that a
boosting algorithm, such as AdaBoost, would achieve a better performance
than random forest.

5.4.2 Act

As none of our previous approaches led to good results, we decided to change
some settings of the random forest and also run AdaBoost on the data. We
assumed that the feature subset was the main problem for the poor perfor-
mance. Therefore, to identify the differences of feature selection, we used
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Feature Selection CV model AUC Precision Recall F-
score

1. WEKA Forward 70:30 RF 0.50 0.03 0.10 0.05
AdaB 0.55 0.05 0.27 0.09

2. WEKA Backward 70:30 RF 0.50 0.04 0.04 0.04
AdaB 0.53 0.05 0.21 0.08

Table 14: Change history of Iteration 3

Figure 33: Feature subset using forward selection in Weka

Weka datamining tool to select a feature subset. Weka can analyze different
approaches in feature selection depending on the dataset. For our dataset it
suggested a wrapper method. In the first run we used forward selection to
identify the best features that were highly correlated with the target vari-
able and at same time did not correlate between each other. After running
five hundred eighty-nine different subsets, Weka identified that the best one
consists of the eight features seen in Figure 33. We can see that the subset in-
cluded three features that belong to the drivers’ group, one regional feature,
three car relevant features and only one calculated feature. Nevertheless, all
four feature categories were present.

In Table 14 we can see that the performance increased, using the features
identified by Weka. Both methods ran on the oversampled data using the
SMOTE method. The random forest had five hundred trees and used de-
fault parameters, whereas the AdaBoost only used the default parameters
with fifty trees. AdaBoost achieved an AUC of 0.55 compared to the random
forest of the previous iteration. Furthermore, we decided to use precision
and recall as further evaluation metrics which allowed us to compare the re-
sults more in detail. Random forest achieved a recall of 0.10 and AdaBoost
0.27 which means that in the case of AdaBoost 27% of all customers were
identified as placing a claim. For the further analysis we focused more on im-
proving the recall rather than the precision, as we assumed that an insurance
company is more interested in identifying more possibly claiming customers
than identifying fewer but more accurate ones.
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Figure 34: ROC curve of oversampled dataset using AdaBoost with 12 trees

Figure 35: Feature subset using backward selection in Weka

We improved our results in the previous run through changing the feature
space. Therefore, we were interested how the results would change if yet an-
other feature subset was used. The Weka Datamining tool provides a back-
ward selection search strategy which evaluates the best subsets of features
starting with all possible ones. Weka analyzed one thousand six hundred
eighty different subsets and received the best score with thirteen features
that are shown in Figure 35. By looking at the feature names, we can see
that six features were identified as important that relate to the drivers group.
Five features about the car were relevant and only two features about the
region were important. Backward selection identified more features and an-
alyzed more different subsets than forward selection. Another interesting
aspect is that no calculated feature was identified as relevant in the subset.

We performed the same random forest and AdaBoost as in the first run,
so that we could compare the results using the two search strategies. From
Table 14 we can see that the backward selected feature subset leads to worse
results than the forward selected set for both classifiers. Using this feature
subset we predict less potential claiming customers as the recall decreased for
both random forest and AdaBoost. Therefore, we decided to use the feature
set of the forward selection for further analysis as it gave us the best results
so far.
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param_grid = {" n_estimators " : [ 8 , 10 , 18 , 22 ] ,
"max_depth " : [ 3 , 5 , 7 ] ,
"min_samples_split " : [ 1 0 , 15 , 20 ] ,
"min_samples_leaf " : [ 3 , 5 , 10 , 20 ] ,
"max_leaf_nodes " : [ 10 , 20 , 40 ] ,
"min_weight_fraction_leaf " : [ 0 . 1 ] }

Listing 3: Tuning Parameters

5.5 Iteration 4

In Iteration 3, AdaBoost performed slightly better than random forest using
the forward selected feature subset. However, as we want to increase the
recall, this iteration focuses on tuning the parameters for the random forest
and AdaBoost.

5.5.1 Look & Think

In the previous iteration we did not tweak our models at all. Therefore, to
optimize the models, we used the knowledge gained from the literature re-
view to analyze the current parameters and identify possible improvements.
Sklearn provides a module called gridsearchCV22 that is used to tune the
hyper parameters, which are parameters that are passed as arguments in-
stead of being used automatically with the classifier. Therefore, to skip the
repetitive process of changing parameters, we applied this method to analyze
the results of random forests using different parameters. We found a Kaggle
notebook23 that focuses on tuning random forest using grid search. As it is
similar to our approach we used some of the input provided by it for our
analysis.

5.5.2 Act

As gridsearchCV provides us with the possibility to try out several param-
eters at once without the need to repeatedly train the model, we used it
for further analysis to tune the random forest. Listing 3 shows the possible
parameters for the random forest that the method analyzed.

Applying gridsearchCV to our AdaBoost model requires a slightly differ-
ent approach, as AdaBoost does not have many hyper parameters to change.
However, it uses the parameter base_estimator which is the initial estima-
tor from which the ensemble is built. By default, this parameter is a decision

22
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

23
https://www.kaggle.com/hadend/tuning-random-forest-parameters
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Model Parameters AUC Precision Recall F-
score

1. RF 8 trees,max_depth=3,
max_leaf_nodes= 10,
min_samples_leaf=3,
min_samples_split=10,
min_weight_fraction_leaf= 0.1

0.57 0.05 0.59 0.09

2. RF 100 trees, remaining in row 1 0.56 0.05 0.55 0.08
3. RF 200 trees, remaining as in row 1 0.56 0.05 0.55 0.08
4. AdaB 10 trees, base_estimator=

(criterion=’gini’,
base_estimator_splitter=’best’)

0.51 0.06 0.07 0.06

5. AdaB 100 trees, remaining as in row 4 0.50 0.04 0.11 0.05
6. AdaB 200 trees, remaining as in row 4 0.50 0.04 0.11 0.05
7. AdaB 50 trees, base_estimator=(decision

tree with max_splits=1)
0.54 0.06 0.24 0.09

8. AdaB 100 trees, remaining as in row 7 0.54 0.05 0.21 0.09

9. AdaB 200 trees, remaining as in row 7 0.53 0.05 0.16 0.08
10. AdaB 5 trees, base_estimator=RF from

row 1
0.56 0.05 0.41 0.09

Table 15: Change history of Iteration 4

param_grid = {" base_est imator__criter ion " : [ " g i n i " , " entropy " ] ,
" base_est imator__spl i t ter " : [ " best " , "random " ] ,
" n_estimators " : [ 3 , 5 , 1 0 ]

}

Listing 4: Tuning Parameters for decision tree

tree which selects weak learners and creates strong learners through combin-
ing them. This means that in order to perform gridsearchCV we needed to
analyze the parameters used for the decision tree. The tuning parameters of
the decision tree can be seen in Listing 4.

Table 15 shows the best evaluated tuning parameters and the corresponding
results for both random forest and AdaBoost. From row 1 and 4, we can
see that the tuned random forest performed much better than the tuned Ad-
aBoost. Furthermore, training the data on the tuned AdaBoost algorithm
achieved worse results than the AdaBoost model with default parameters
from Iteration 3. Figure 36 and 37 show the plotted ROC of the tuned ran-
dom forest and the AdaBoost with the tuned decision tree from Table 15
(row 1 and 4).
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We further analyzed different variations of the two models by increasing
the number of trees. As can be seen in Table 15 (row 1 to 3) random forest
performed best with the initial eight trees, as one hundred and two hundred
trees have a slightly worse performance. Eight trees achieved an AUC of 0.57
and a recall of 0.59. One hundred and two hundred trees both achieved an
AUC of 0.56 and a recall of 0.55. Similarly, looking at Table 15 (row 4 to
6) AdaBoost showed a decreased performance in AUC the more trees were
added. Ten trees achieved an AUC of 0.51 and the AUC for one hundred
or two hundred trees remained the same at 0.50. However, looking at the
recall we can see that more trees slightly improved it. Ten trees had a recall
of 0.07, whereas one hundred and two hundred trees achieved a recall of 0.11.

As Caruana and Niculescu-Mizil [16] achieved the best results with a boosting
algorithm that used decision stumps, we decided to try the same. Decision
stumps are decision trees that only use one split. Table 15 (row 7 to 9) shows
the results that we achieved using AdaBoost with decision stumps. The best
result amongst the three variations is the AdaBoost with fifty trees as the
AUC value was 0.54 and the recall was 0.24. Increasing the number of trees
to one hundred gave us an AUC value of 0.54 and and recall of 0.16. Two
hundred trees decrease the AUC value to 0.53 and the recall to 0.16. Look-
ing at the results we see that the more trees were added the worse AdaBoost
performed. However, AdaBoost using decision stumps performed better than
AdaBoost using the tuned parameters for the decision tree as an estimator.

As a last approach we used our best performing model from the first run
(see row 1 from Table 15) as a base estimator for AdaBoost. The AUC value
was 0.56 and the recall was 0.41 which can be seen in the last row of Table
15. From all possible variations used of the AdaBoost algorithm the last
run was the best as both AUC and recall were the highest with 0.56 and
0.41 respectively. In Iteration 3 AdaBoost achieved an AUC of 0.55 and a
recall of 0.27. Nevertheless, the tuned random forest with eight trees from
the first row of Table 15 achieved the best results, with an AUC of 0.57 and
a recall of 0.59, so far. In this iteration we achieved a better performance of
both methods, therefore we continue our analysis with the parameters that
achieved the best results.

5.6 Iteration 5

Although, the performance of the random forest was slightly improved, it
does still not have much predictive power. Therefore, further investigation
is needed.
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Figure 36: ROC curve of tuned Ran-
dom Forest

Figure 37: ROC curve of AdaBoost
using tuned decision tree

Feature Selection Reason model AUC Precision Recall F-
score

1. All except of calc no correlation
with target

RF 0.50 0.04 0.11 0.06

AdaB 0.50 0.00 0.0 0.00
2. all except the two

with too high missing
value

trial RF 0.54 0.05 0.27 0.08

AdaB 0.50 0.0 0.0 0.0
3. Features without

noise
to increase
predictive power

RF 0.55 0.04 0.50 0.08

AdaB 0.54 0.05 0.31 0.08

Table 16: Change history of Iteration 5

5.6.1 Look & Think

We identified that our random forest performed better by changing the hyper
parameters. In this iteration we want to analyze whether we can further
increase the recall by changing the feature space. During the literature review
we identified that features play a major role in the success of a learning model.
Therefore, we want to analyze various feature subspaces and the influence
they have on the performance.

5.6.2 Act

In this iteration we split our training data using a cross validation of a 70:30
ratio for a train and validation test set. Furthermore, we kept the best
parameters from Iteration 4. As can be seen in Table 16, in the first run
the calculated features were deleted, as they have (almost) no correlation to

70



the target variable. However, this subset did not improve the performance
as the random forest achieved an AUC of 0.5 and a recall of 0.11. Similarly,
AdaBoost achieved an AUC of 0.5 and did not predict any customer as
claiming which is indicated by the zero values for precision and recall. In
the second run we used all features except the two features that had too
many missing values (more than 50%). Looking at Table 16 we can see that
random forest improved its performance of this iteration as both AUC and
recall increased to 0.54 and 0.27 respectively. On the contrary, we can see that
AdaBoost performed poorly using this feature set as it did not identify any
customer as potentially claiming. Lastly, we used the features that did not
include any noise according to an analysis conducted by another participant
of the competition24. This approach achieved the best result in this iteration
as the random forest achieved an AUC of 0.55 with a recall of 0.50. The same
can be observed for AdaBoost in this iteration as the AUC value is 0.54 and
the recall 0.31. Although this feature subset achieved the best scores in this
iteration, it still performed worse than in Iteration 4 as the random forest
achieved a recall of 0.59.

5.7 Iteration 6

The last iterations showed improvements in the results. However, none of
the changes that were conducted so far led to a good result. Therefore, this
iteration focuses on undersampling the majority class instead of oversampling
the minority class.

5.7.1 Look & Think

As we identified that our model improved by oversampling, we wanted to
analyze the difference if we use an undersampling method instead. Tomek
Links25 is a good way to decrease the amount of the instances of the majority
class. The method looks at instances that are close in distance to the ones
of the majority class. It then removes the majority class leaving the instance
of the minority class as it is. This process allows the classification algorithm
to better differentiate amongst instances that are close to the majority class
and hence can be misclassified easily.
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Model Parameters AUC Precision Recall F-
score

1. RF 8 trees,max_depth=3, max leaf nodes=
10, min samples leaf=3, min samples
split=10, min weight fraction leaf= 0.1,
class weight="balanced"

0.56 0.05 0.56 0.09

2. RF 100 trees,max depth=3, max leaf nodes=
10, min samples leaf=3, min samples
split=10, min weight fraction leaf= 0.1,
class weight="balanced"

0.56 0.05 0.57 0.09

3. RF 200 trees,max depth=3, max leaf nodes=
10, min samples leaf=3, min samples
split=10, min weight fraction leaf= 0.1,
class weight="balanced"

0.56 0.05 0.55 0.09

4. AdaB 50 trees, default 0.50 0.0 0.0 0.0
5. AdaB 50 trees, base estimator= RF from run 2 0.57 0.05 0.57 0.09

6. AdaB 100 trees, base estimator= RF from run 2 0.57 0.05 0.57 0.09

7. AdaB 200 trees, base estimator= RF from run 2 0.57 0.05 0.56 0.09

8. AdaB 100 trees, base estimator= decision
stump (max features=3, max depth= 1,
class weight="balanced")

0.57 0.05 0.53 0.09

9. AdaB 50 trees, base estimator=decision stump
(max features=3, max depth= 1, class
weight="balanced", max leaf nodes=10)

0.58 0.05 0.57 0.09

10. AdaB 100 trees, base estimator= decision
stump (max features=3, max depth= 1,
class weight="balanced", max leaf
nodes=10)

0.58 0.05 0.57 0.09

Table 17: Change history of Iteration 6

5.7.2 Act

Table 17 shows the summary of approaches using Tomek Links as an under-
sampling technique. For all iterations, we use the features that were identi-
fied through WEKA datamining tool using forward selection as this feature
set gave us the best results so far and a 70:30 cross validation to decrease
computational costs. Furthermore, the variations of the random forest and
AdaBoost used in this iteration are similar to the onces used in Iteration 4.
Therefore, the table is structured similarly. Looking at Table 17 we can see
that random forest achieved an AUC value and a recall of both 0.56 using
the parameters that were identified as the best ones through gridsearchCV

24
https://www.kaggle.com/ogrellier/noise-analysis-of-porto-seguro-s-features

25
http://contrib.scikit-learn.org/imbalanced-learn/stable/under_sampling.html
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from Iteration 4. However, compared to the random forest with the same
parameters using SMOTE as an oversampling method we achieved a slightly
lower performance as both AUC and recall were higher in Iteration 4. By in-
creasing the number of trees from the initial eight to one hundred, we slightly
improve our recall to 0.57, whereas the AUC remains the same with 0.56.
Lastly, we used two hundred trees and identified that the AUC value remains
at 0.56 whereas the recall slightly decreases to 0.55.

We applied AdaBoost with the default parameters on the undersampled data
and surprisingly received bad results as can be seen in Table 17 (row 4). No
customer was identified as placing a claim, which means that every predic-
tion was "not claiming". We received an AUC value of 0.5 and both recall
and precision were 0.0. To see the difference in the results we changed our
parameters and set the base estimator to the random forest from the second
run (see Table 17 row 2) , as this was the model that achieved the highest re-
call in this iteration so far. By changing the base estimator we improved our
AUC value and recall both to 0.57. Thus using the undersampled dataset,
we can conclude that AdaBoost performed better using the best performing
random forest as base estimator. In Iteration 4 we did the same with over-
sampled data, however, random forest performed better than AdaBoost that
used the random forest as base estimator. Lastly, we used AdaBoost with
two hundred trees. However, it did not give us any improvement as the AUC
remained at 0.56 and the recall slightly decreased to 0.56.

As a last approach we wanted to analyze AdaBoost’s performance using
decision stumps. As we assumed that Tomek Links did not provide us with a
totally balanced dataset, we therefore, used an additional parameter class_
weight26 that was not used in the previous iterations. When specified as
"balanced" the decision tree additionally puts weight on the minority class.
In Table 17 we can see that AdaBoost received the best results in this itera-
tion. AdaBoost with one hundred trees and a maximal depth of one achieved
an AUC value of 0.57 and a recall of 0.53 (see Table 17 row 8). AdaBoost
with fifty trees achieved an AUC of 0.58 and a recall of 0.57. Increasing the
number of trees to one hundred did not lead to a improved results as both
AUC and recall remain the same.

Undersampling created a similar result than oversampling. However, com-
pared to the computational costs and hence the execution time of the resam-
pling method, we can say that oversampling using SMOTE was much faster.

26
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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Technique Feature Set Model AUC Recall
Iteration 1: Variance Threshold RF (100 trees) - -
Change of parameters KNN - -
Iteration 2: Variance Threshold RF (500 trees) 0.50 -
Oversampling all 58 features RF (500 trees) 0.50 -
Iteration 3: Weka Forward RF 0.50 0.10
Change of feature space AdaB 0.55 0.27

Weka Backward RF 0.50 0.40
AdaB 0.53 0.21

Iteration 4: Weka Forward RF (8 trees) 0.57 0.59

Change of parameters RF (100 trees) 0.56 0.55
RF(200 trees) 0.56 0.55
AdaB (10 trees) 0.51 0.07
AdaB (100 trees) 0.50 0.11
AdaB (200 trees) 0.50 0.11
AdaB (Decision stump, 50 trees) 0.54 0.24
AdaB (Decision stump, 100 trees) 0.54 0.21
AdaB (Decision stump, 200 trees) 0.53 0.16
AdaB (RF, 5 trees) 0.56 0.41

Iteration 5: All except of calc RF 0.50 0.11
Change of feature space AdaB 0.50 0.0

All except two with RF 0.54 0.77
too high missing val. AdaB 0.50 0.0
Features without RF 0.55 0.50
noise AdaB 0.54 0.31

Iteration 6: Weka Forward RF (8 trees) 0.56 0.56
Undersampling RF (100 trees) 0.56 0.57

RF (200 trees) 0.56 0.55
AdaB (50 trees) 0.50 0.0
AdaB (RF, 50 trees) 0.57 0.57
AdaB (RF, 100 trees) 0.57 0.56
AdaB (RF, 200 trees) 0.57 0.53
AdaB (Decision stump, 100) 0.57 0.53
AdaB (Decision stump, 50, 0.58 0.57
10 max leafs)
AdaB (Decision stump, 100, 0.58 0.57
10 max leafs)

Table 18: Summary of the results from all iterations
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As the six iterations provided several approaches we want to summarize our
findings. Table 18 shows a high-level summary of the six iterations, the de-
tails can be found in each of the iterations. Furthermore, the table does not
provide all approaches of Iteration 1 as no AUC nor recall was calculated,
thus the detailed summary is available in Table 12 of Section 5.2.

5.8 Comparison of Other Approaches

Looking at the approaches from other participants on Kaggle, we recognize
that most of them use XGBoost as a learning method. XGBoost stands for
"Extreme Gradient Boosting"27. In gradient boosting new models are cre-
ated that predict the error of prior models. The models are then added up
to create the final prediction [14]. XGBoost has the main advantage to be
fast, memory efficient and achieves high accuracy [55].

There are a lot of published contributions on Kaggle, however, we partic-
ularly analyze the notebook from Head or Tails28 as it is the highest ranked
notebook based on "hotness" which looks at the popularity of the work among
other participants. We identify that the features were analyzed from a de-
scriptive point of view. Furthermore, the features were organized into the
corresponding group to allow an easier visualization. The features were com-
pared to the claim rates to identify patterns in the data. After the general
feature analysis the binary features were examined more in detail. More con-
cretely, the binary features were the starting point for the feature engineering
step. Heads and Tails focused on the binary features and the corresponding
claim rate. Two new features were created: one that looked at the sum of bi-
nary features and the other that looked at the difference between the binary
features. Each binary feature was analyzed based on the influence it had on
the claim rate and the count was added up resulting in a new feature. For
the feature that looked at the differences, the median of each binary feature
was used as the reference row. If there was a difference in the binary feature
to the reference row, it was counted and added to the feature. For a more
detailed description the notebook can be used for reference. Interesting is
that Heads and Tails assumed that the calculated features have little pre-
dictive power. We can see that other participants assumed the same as the
calculated features were dropped several times. Heads and Tales used XG-
Boost as a learning method, however since there are no results available we
cannot compare it to our approach. Moreover, in this notebook feature se-

27
http://xgboost.readthedocs.io/en/latest/model.html

28
https://www.kaggle.com/headsortails/steering-wheel-of-fortune-porto-seguro-eda
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lection was initially not considered as all features were combined (the initial
features with the newly created once). We can also identify that this ap-
proach does not consider oversampling or undersampling. However, looking
at other approaches we can see that some participants either used oversam-
pling combined with XGBoost as a classifier or weighted approaches. Latter
puts additional weight on the minority class so that the dataset is more
balanced.

6 Conclusion
This chapter is split into two sections. The first section concludes the thesis
by summarizing the scope of the thesis and deriving conclusions based on the
findings. The second section looks at future works. It provides the reader
with ideas how the analysis can be expanded.

6.1 Summary

In summary, this thesis analyzed machine learning in general and examined
classification techniques in particular. With that in mind, the main research
question of this thesis is, ’What is the effectiveness of various feature se-
lection and classification techniques?’. To answer the research question it
was necessary to identify and examine possible feature selection techniques,
classification algorithms and suitable evaluation metrics. Therefore, three
subquestions needed to be answered: Firstly, we needed to evaluate how to
identify valuable features. Secondly, we needed to assess which algorithms
were suitable for a classification problem and lastly, we needed to look into
possible evaluation metrics that were suitable for the comparison of the clas-
sification algorithms. The subquestions can be answered as follows:

We discovered that valuable features can be identified through feature selec-
tion methods, that can generally be grouped into filter, wrapper and embed-
ded methods. Furthermore, we identified that there exist several classifica-
tion algorithms, however, we only introduced distance-based and tree-based
based algorithms because linear-based models require linear separability of
the data which is rarely the case in real-world scenarios. Moreover, we iden-
tified several metrics as useful for a binary classification problem. In detail,
the evaluation metrics were accuracy, precision, recall, f-score and the area
under the curve. Initially, we started to compare the classifiers with their
accuracy, however, when we identified that the dataset was imbalanced, we
focused on the other metrics. The following summarizes our findings based

76



on the implementation of various feature selection methods, classification
techniques and evaluation metrics on the dataset that were used in the prac-
tical assessment.

We applied all three feature selection approaches to our dataset and identi-
fied that the wrapper approach, using forward selection, resulted in a feature
set which contributed to the best results. As our dataset was imbalanced we
used oversampling and undersampling to improve the predictions. Based on
whether the dataset was oversampled or undersampled, we achieved different
results with the classifiers. We applied K-nearest neighbor, random forest
and AdaBoost to the dataset and discovered that AdaBoost performed best
on oversampled data when no parameters were tuned. However, our analy-
sis showed that random forest outperformed AdaBoost on oversampled data
when the parameters were tuned, thus the tuned random forest provided
us with the best results on oversampled data. Furthermore, we discovered
that on undersampled data random forest performed slightly worse than on
oversampled data. On the contrary, AdaBoost performed slightly better on
undersampled data than on oversampled data. In addition, we observed that
the best results on undersampled data were achieved by a tuned AdaBoost
classifier.

With regard to the main research question that looked at the effectiveness of
various feature selection and classification techniques, we can conclude that
the most effective feature selection method was a wrapper approach with
forward selection. The most effective classification technique differs based on
the feature subset that was used. Furthermore, it also depends on whether
the data was oversampled or undersampled. However, we can conclude that
AdaBoost performed best when used out of the box. And random forest
performed best when parameters were tuned. K-nearest neighbor performed
the worst among these three classification methods.

6.2 Future Works

The feature subsets only take the available features into consideration. How-
ever, feature engineering is seen as an important step in data-preprocessing
which can lead to improved results. As we have not considered any feature
engineering steps, it would be interesting to see whether new generated fea-
tures have any impact on the prediction of the classifier. In particular, it
could be analyzed whether feature combinations from the same group, such
as two regional features, or combinations from different groups, such as re-
gional and car related features, can improve the prediction. Furthermore, it
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would be interesting to see how the results change when a XGBoost classifier
is applied to our best feature subset. Lastly, it would be interesting to eval-
uate the impact of dimensionality reduction techniques, such as a principal
component analysis. Therefore, in future research, it would be interesting to
see the differences in the results when dimensionality reduction methods are
performed on the dataset.
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Appendix A
Appendix A provides all remaining figures that have not been presented in
Chapter 5 of the thesis.

Figure 38: Histograms of continuous features
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Figure 39: Histograms of ordinal features
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Figure 40: Histograms of binary features
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Figure 41: Boxplot of continuous features
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Figure 42: Boxplot of ordinal features
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